Parallel Sorting

Sathish Vadhiyar

Parallel Sorting Problem

* The input sequence of size N is distributed across P processors

* The output is such that

* elements in each processor P, is sorted
* elements in P, is greater than elements in P, ; and lesser than elementsin P,

Parallel quick sort

* Naive approach

e Start with a single processor; divide array into two sub-arrays
* Now involve one more processor

* Both the processors perform the next step of quick sort within their local
subarrays

* And so on....till the number of subarrays equal the number of processors

* Disadvantage: Inefficient utilization of processors

Another algorithm

* This algorithm involves all the processors in all the iterations

* One of the processors, PO, begins by broadcasting one of its elements
as the pivot element to all the processors

e Each processor then divides its local array into two sub-arrays
* L: elements less than the pivot
* G;: elements greater than the pivot

Parallel Quick Sort

* Processors then divided into two groups:
* First group will process the subsequent steps with L. s
* Second group with G;s

* The sizes of the processor groups must be in the ratio of the number
of elements in Ls and Gs to achieve load balance

* These number of elements can be found using an allreduce operation

Shared memory implementation

* All U's are formed in the first part of the array; all G’s in the second
part

* Each processor needs to know the locations in the shared memory
where it has to write its L, and G,

* Prefix sums of the sizes of the subarrays can be used

* Prefix sum can be done in O(logP)

Example: Prefix sum illustration

* In this example, 36 is the pivot element

R, Py F, Py Py F;
O 3 |31 (90 (B0 61 |68 (962027 | 0 (6] 1 [13 (PO |51 |91 | 56|95 oG | B (14 2 |16 | 24|25)26 | 1 (30| 85 | G5 | B0 | B4 | 46 | 41 (52 | 49 | T35 | 40 | GO) & | 30 [43 | OF | 52 | 38 | 9B | GG
-\--\"'\-.._ - I|II '.I . i
q--\-""-\- § I| —— -
'\-\.____- I | - -
P | \ —
03|90 |13[18]18 | \ | O (5|7 |11|14]22
\ |
Prefix sum of L subarray srees T \ Prefix sum of GG subarray sies
e ! \
|II |II
|II '.II
\ 4
| \
- II III
3 8 : 11 3 22
Pl A1 |20 (27| 9 | 36| 1 [13) 91 | 56 (05 | 56| 24 | 25 | 26| 1 Pb) oo 0[O0 B0) 61 | GE (06) TO 5L (8 |14 2 |15 | BS | G5 | B0 (B4 | 46 | 41 | 52 | 40) F3 | 49 | 60 | 43 | OF | 52 | 35 | OB | GG

Message Passing Version

* A processor should know which elements in its Li and Gi it should
send to which processor

e Distributed prefix sum is used

* A processor can then deduce its destination processor for sending its
L array using:
e Total number of elements of L subarrays
* prefix sums of sizes
 Size of the processor group that will be responsible for L subarray

e Similarly for the G subarray
* [n worst case, this requires all-to-all with time complexity O(N/P)

Parallel Quick sort

* The process now repeats with the subgroups
e Until the number of subgroups equal the number of processors

At this stage, each processor performs a local quick sort:
O(N/Plog(N/P))

Complexity and analysis

* log P times:
e Broadcast: O(logP)
 Allreduce: O(logP)
e Prefix sum and all-to-all: O(logP + N/P)

* Then local quick sort: O(N/P.logP)
e Total: Q(N/PlogP) + O(|Og2P+N/P|08P)

e Weaknesses: Load imbalance and under-utilization

Bitonic Sort

Bitonic sequence

* A sequence of length n is a bitonic sequence if

e for an element i
* elements al<=a2<=a3<=....<=ai and
* Elements ai >= ai-1 >= ai-2>=...>=an
* Any cyclic rotation of such a sequence is also a bitonic sequence

Bitonic property

* Given a bitonic sequence A, let us form another sequence B such
that:

* B[i] = min(A[i],A[i+N/2])
e B[i+N/2] = max(A[i],A[i+N/2])

* It is easy to prove that:
* Lower half B[0]....B[N/2-1] <= upper half B[N/2]...B[N-1]
* Both the halves themselves are bitonic sequences of lengths N/2

Converting bitonic sequence into a sorted
sequence

* To convert bitonic sequence of length N into a sorted sequence, we
repeat the above recursively:

* In the first stage, form two bitonic sub-sequences of N/2 each

* In the second stage, form four bitonic sub-sequences of N/4 each
* After logN stages, a sorted sequence is formed

* This process is called bitonic merge

Stage 1 Stage 2 Stg. 3 Stg. Stg.

4 5

1 1 1 1 1 1

3 3 3 3 1]: 1
13 13 13 1 3 :[3
20 20 S S 3 4
31 31 2 O O O
36 30 1 13 13 :[13
49 26 26 20 15 14
51 25 25 25 14 :[15
61l 15 15 15 20 20
68 14 14 14 25 :[25
70 8 20 26 26 26
S0 4 27 27 27 I 27
96 2 31 31 31 30
99 1 30 30 30 I 31
o1 o1 51 51 36 I 49
S5 S5 G1 56 56 51
S0 S0 cS 36 51 :[56
65 65 65 65 Gl 56
56 56 56 56 56 :[61l
56 56 56 G1 G5 G5
30 = 36 36 = 68 - 68 :[6S
26 49 95 70O 70 70O
25 51 o1 S0 S0]: S0
15 G1 85 85 85 S0
14 6 S0 S0 S0 :[S5

S 70O 70 95 95 o1
4 S0 S0 91 91 :[o5

2 96 96 96 96 96

Bitonic sort

* Convert the original unsorted sequence into a bitonic sequence, then
use the above procedure to convert to a sorted sequence

* Converting unsorted sequence of length N into a bitonic sequence of
length N:

* Larger and larger bitonic sequences are built starting from sequences
of lengths 2

* Note that any sequence of length 2 is a bitonic sequence

Bitonic sort

* |n the first phase:

 Sort two consecutive sub-sequences of lengths 2 such that
 the first subsequence is sorted in ascending order, second in descending order

* Now the two sorted sub-sequences are merged to form a bitonic sequence
of length 4.

* |In the second phase:
* Consider two consecutive sub-sequences of lengths 4
e Sort them into ascending and descending
 Merge them into bitonic sequence of length 8

Bitonic sort

e Soon....

e At the end of logN phases, a bitonic sequence of length N formed,
which is converted into a sorted sequence

* Time complexity:

* logN phases

* Phase i has i stages
* O(log?N)

Phase 5

Phase 4

Phase 2 Phase 3

Phase 1

1
1
2
3
=
O
1:

\\\\\\.

MO0
THANN M

e}

-F

e]
-
e

>
.

31

N WO 0Q
TO0N0QQ

QOO

TQQN00Q

0= 00
PMO0ae

99
=20
Gl
6=
96

15
20
25
26

O ==
OO0 O

20
36

=~ M
1) = ™

g

-~

pORE

(@]
1

O HOQ
NN
\.\\.\.\\

QO QW=

e

56
56

(G

51
G5

‘a=an T

S

0w o

b

O =10
B AR IR T B 0 R 0)

0

nl

14

G

-~

o)
ARl

uy

Iy
o)

N

TO

S0
S0
=5

O .
At

now
nwo

26
30
=
Gl
S0

91
95
9G
99

\

0 < N

-1
..

=
LW

Ow oW

Mmoo

=)
>

19

Bitonic

Bitonic Bitonic

Bitonic

Output

sSeduuernoce

Saeduuernices Seqguernoces

cequences
of length <

=

SCodC eIl Ce

32

of length

of length 16

=

of length

Ot

=

s

Sort
bitonic

Sort

Sort
bhitonic

Sort

itonic
sequence

bitonic

bitonic

=S

of length 16

seqguenaces sedqguenoces sedguiernc

sequences
of lenngth

32

of length

of length =

of lenngth 4

=2

Sequential complexity

* Has logN phases

* Each phase i has i stages

* Each stage i performs N compare-exchange operations
* Hence O(Nlog?N)

Parallelization
Hypercube and mesh networks

* Maps well to hypercubes
* Processors are mapped to corresponding hypercube nodes

* Processors that need to interact for compare-exchange operations in
the phases are mapped to hypercube nodes that have direct
connections

* For mesh networks, a shuffle-row mapping is used

Parallel implementation
General networks

* Array distributed into block distribution across P processors

* The last logP of the logN phases require communications for exchanging
elements

* |n the last phase, out of the logN stages, the first logP stages involve
communications

* Each communication is a compare-and-exchange
* Hence O(log?P) communication steps

* O(N/P.log?P) communications
* O(N/Plog?N) computations

Observations

* In general, applied to small sequences due to high computation
complexity

* Has poor speedup for greater than thousand processors due to high
communication complexities

e Sample Sort

Parallel Sorting by Regular Sampling (PSRS)

1. Each processor sorts its local data

2. Each processor selects a sample vector of size p-1; kth
element is (n/p * (k+1)/p)

Samples are sent and merge-sorted on processor O

4. Processor O defines a vector of p-1 splitters starting from
p/2 element; i.e., kth element is p(k+1/2); broadcasts to
the other processors

w

Example

Phase 1

FProcessor | Frocessor 2 FProcessar 3
| 16| l| 17|24| 33‘28|30‘ l| U|27| 9|35| |34‘ 23| 19‘ 18| '11‘ :"|21| 13| 8|35‘ 13|29‘ | 5| 3| 4-| 14| 33| 15| 33| 10‘36|31|3€|| 5‘
Sarted
local hlocks | 0| 1] 2 9| 16‘ 17| 24| 25| 27| 28| 30| 33 | ?‘ 3| 11‘ 12| 13‘ 13| 19(21 23|29 34 35‘ | 3| 4| 5| 6| lﬂ| 14| 15| 20‘ 32| 25| 3-1| 32‘
Lacal

Regular Samples

Phase 2

Processor |

Cathered Regular Sample | i} ‘ 16| 27 | 7 | 13| 23] 3 | 10| 22
Sorted Regudar Sample | 0 ‘ 3 | 7 ‘ lO| 13 | 16| 22 | 23‘ 27 |

PSRS

5. Each processor sends local data to correct destination
processors based on splitters; all-to-all exchange

6. Each processor merges the data chunk it receives

Step 5

* Each processor finds where each of the p-1 pivots divides
its list, using a binary search

* i.e., finds the index of the largest element number larger
than the jth pivot

* At this point, each processor has p sorted sublists with the
property that each element in sublist i is greater than each
element in sublist i-1 in any processor

Step 6

* Each processor i performs a p-way merge-sort to merge the
ith sublists of p processors

Example Continued

FPivots 10(22 ‘

Phase 3
Processor {

Formed partitions

| o] 1 25| 27| 28] 30 | 7| 8] [11]12] 13 18] 10 21 29| 34 35| 4| s| 6] 10] |14]15]20[22| |26

Processor 2 Processor 3

-

2| o] |16[17] |24

33 23 3 31 32‘

Phase 4

Re-assigned partitions

pomsar | o] 1] 2[9] From Proc. 1 | 16] 17] From Proc. 1 | 24] 25] 27| 28] 30 33]
FromPrc 2 | 7| s Bromsar | 11] 12] 13] 18] 19] 21 From Proc. 2
FromProc.3 | 3| 4] 5| 6] 10| From Proc. 5 | 14] 15] 20] 22] Emmself | 26
Final merged partitions 11 keys 12keys 13 keys
| of 1] 2| 3| 4] 5| 6] 7] 5] o] 10 | 1] 12] 13] 14] 15] 16] 17] 18] 19{ 20| 21 | 23] 24| 25 26 27| 28] 29| 30| 31| 32| 33| 34] 35|

[10l [5]

22

Analysis

« The first phase of local sorting takes O((n/p)log(n/p))

« 2nd phase:
* Sorting p(p-1) elements in processor O - O(p?logp?)
* Each processor performs p-1 binary searches of n/p elements - plog(n/p)

» 3rd phase: Each processor merges (p-1) sublists
* Size of data merged by any processor is no more than 2n/p (proof)
« Complexity of this merge sort 2(n/p)logp

« Summing up: O((n/p)logn)

Analysis

» 1s* phase - no communication
» 2"d phase - p(p-1) data collected; p-1 data broadcast

» 3rd phase: Each processor sends (p-1) sublists to other p-1
processors; processors work on the sublists independently

Analysis

Not scalable for large number of processors

Merging of p(p-1) elements done on one processor; 16384
processors require 16 GB memory

Sorting by Random Sampling

* An interesting alternative; random sample is flexible in size
and collected randomly from each processor’s local data

« Advantage

A random sampling can be retrieved before local sorting; overlap
between sorting and splitter calculation

Radix Sort

* During every step, the algorithm puts every key in a bucket
corresponding to the value of some subset of the key's bits

A k-bit radix sort looks at k bits every iteration

* Easy to parallelize - assign some subset of buckets to each
processor

* Load balance - assign variable number of buckets to each
processor

Radix Sort — Load Balancing

» Each processor counts how many of its keys will go to each
bucket

« Sum up these histograms with reductions

« Once a processor receives this combined histogram, it can
adaptively assign buckets

Radix Sort - Analysis

* Requires multiple iterations of costly all-to-all

» Cache efficiency is low - any given key can move to any
bucket irrespective of the destination of the previously
indexed key

« Affects communication as well

Histogram Sort

* Another splitter-based method
* Histogram also determines a set of p-1 splitters

* It achieves this task by taking an iterative approach rather
than one big sample

* A processor broadcasts k (> p-1) initial splitter guesses
called a probe

* The initial guesses are spaced evenly over data range

Histogram Sort
Steps

1. Each processor sorts local data

2. Creates a histogram based on local data and splitter
guesses

3. Reduction sums up histograms

4. A processor analyzes which splitter guesses were
satisfactory (in ferms of load)

5. If unsatisfactory splitters, the , processor broadcasts a
new probe, go to step 2; else proceed to next steps

Histogram Sort
Steps

6. Each processor sends local data to appropriate processors
- all-to-all exchange

7. Each processor merges the data chunk it receives

Merits:
* Only moves the actual data once
 Deals with uneven distributions

Sources/References

*Ont
Para

* Para
* High

ne versatility of parallel sorting by regular sampling. Li et al.

lel Computing. 1993.
lel Sorting by regular sampling. Shi and Schaeffer. JPDC 1992.
y scalable parallel sorting. Solomonic and Kale. IPDPS 2010.

