Parallelization Principles

Sathish Vadhiyar

Parallel Programming and Challenges

- Recall the advantages and motivation of parallelism
- But parallel programs incur overheads not seen in sequential programs
 - Communication delay
 - Idling
 - Synchronization

How do we evaluate a parallel program?

- Execution time, T_p
- Speedup, S
 - \Box S(p, n) = T(1, n) / T(p, n)
 - Usually, S(p, n) < p</p>
 - Sometimes S(p, n) > p (superlinear speedup)
- Efficiency, E
 - $\Box E(p, n) = S(p, n)/p$
 - Usually, E(p, n) < 1</p>
 - Sometimes, greater than 1
- Scalability Limitations in parallel computing, relation to n and p.

Speedups and efficiency

Limitations on speedup – Amdahl's law

- Amdahl's law states that the performance improvement to be gained from using some faster mode of execution is limited by the fraction of the time the faster mode can be used.
- Overall speedup in terms of fractions of computation time with and without enhancement, % increase in enhancement.
- Places a limit on the speedup due to parallelism.
- Speedup = 1

$$(f_{s} + (f_{p}/P))$$

Gustafson's Law

- Increase problem size proportionally so as to keep the overall time constant
- The scaling keeping the problem size constant (Amdahl's law) is called strong scaling
- The scaling due to increasing problem size is called weak scaling

Roofline performance model

- Gives a bound on the performance of an application on a particular architecture
- Helps to categorize the code's performance as memory-bound or performance-bound
- Depends on three parameters
 - Peak performance of a machine, P_{peak} (FLOP/s)
 - Memory bandwidth of the architecture, B_s (Bytes/s)
 - Computation intensity of the code, I (FLOP/Byte)
- Time taken given by I x B_s

Roofline performance model graph

Intensity of the code

Refer youtube video for excellent details: <u>https://youtu.be/lrkNZG8MJ64?si=nMb8XnV02N</u> LuxwQj

PARALLEL PROGRAMMING CLASSIFICATION AND STEPS

Parallel Program Models

- Single Program Multiple Data (SPMD)
- Multiple Program Multiple Data (MPMD)

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

Programming Paradigms

- Shared memory model Threads, OpenMP, CUDA
- Message passing model MPI

Data Parallelism and Domain

Decomposition

- Given data divided across the processing entitites
- Each process owns and computes a portion of the data owner-computes rule
- Multi-dimensional domain in simulations divided into subdomains equal to processing entities
- This is called domain decomposition

Domain decomposition and Process

Grids

- Process grid used to specify domain decomposition
- The given P processes arranged in multidimensions forming a process grid
- The domain of the problem divided into process grid

Data Distributions

For dividing the data in a dimension using the processes in a dimension, data distribution schemes are followed

b1

- Common data distributions:
 - Block: for regular computations
 - Block-cyclic: when there is load imbalance across space

1	·														
	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
	3	4	5	3	4	5	3	4	5	3	4	5	3	4	5
	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
	3	4	5	3	4	5	3	4	5	3	4	5	3	4	5
	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
	3	4	5	3	4	5	3	4	5	3	4	5	3	4	5
	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
	3	4	5	3	4	5	3	4	5	3	4	5	3	4	5