Parallelization Principles

Sathish Vadhiyar

Parallel Programming and Challenges

Recall the advantages and motivation of
parallelism

But parallel programs incur overheads not
seen in sequential programs

o Communication delay
o Idling
o Synchronization

‘ Challenges

PO

P1

Idle time Computation

Communication

Synchronization

How do we evaluate a parallel program?

Execution time, T,

Speedup, S

a S(p,n)= T(1,n)/ T(p, n)

o Usually, S(p, n) < p

o Sometimes S(p, n) > p (superlinear speedup)
Efficiency, E

0 E(p, n)=S(p. n)/p

o Usually, E(p, n) <1

o Sometimes, greater than 1

Scalability - Limitations in parallel computing,
relation to nand p.

‘ Speedups and etficiency

s / :

Ideal P

e
/

Practical

Limitations on speedup — Amdahl’s law

Amdahl’s law states that the performance
improvement to be gained from using some faster
mode of execution is limited bg the fraction of
the time the faster mode can be used.

Overall speedup in terms of fractions of
computation time with and without enhancement,
7 increase in enhancement.

Places a limit on the speedup due to parallelism.
Speedup =1
(fs + (f,/P))

Gustaftson’s Law

Increase problem size proportionally so as to
keep the overall time constant

The scaling keeping the problem size
constant (Amdahl’s law) is called strong
scaling

The scaling due to increasing problem size is
called weak scaling

Roofline performance model

A model that relates processor performance
to off-chip memory traffic.

Ties together floating-point performance,
operational intensity and memory
performance in a 2D graph.

Roofline performance model

Gives a bound on the performance of an
application on a particular architecture

Helps to categorize the code’s performance
as memory-bound or performance-bound

Depends on three parameters

o Peak performance of a machine, P, (FLOP/s)

o Memory bandwidth of the architecture, B,
(Bytes/s)

o Computation intensity of the code, | (FLOP/Byte)
— operations per byte of DRAM traffic

Performance of the code given by I X B,

Rootline performance model graph

A S J

128

B4

32

. peak floating-point performance
16 , ks““e" |

>
%
2
P
o

Attainable GFlops/sec

Operational Tntensity 2
(compute-bgund)

Operational [ntensity 1)
(memory-bound)

1/2

1/4 1/2 1 2 4 8 16
Operational Intensity (Flops/Byte)

Source: Below paper
Roofline: An Insightful Visual Performance Model for Multicore

Architectures. S. Williams, A. Waterman, D. Patterson.
Communications of ACM. Pages 65-76. Vol. 52, No. 4, April 20009.

10

Roofline performance model

Horizontal line corresponds to peak floating
point performance of the machine.

The slope in the graph bounds the maximum
floating point performance the memory
system of the computer can support for a
given operational intensity.

Intersection of the two lines — At the point of
peak computational performance and peak
memory bandwidth

11

Roofline performance model

For a given kernel, its operational intensity
defines a point on the x-axis.

The roofline sets a performance bound on the
performance of the kernel depending on its
operational intensity

If the line through the kernel's operational
intensity hits the slanting line — kernel is said to
be memory-bound.

Else if it hits the horizontal line — computation-
bound.

Ridge point x-coordinate — Minimum operational
intensity required to achieve peak performance

PARALLEL PROGRAMMING
CLASSIFICATION AND STEPS

‘ Parallel Program Models

= Single Program

Multiple Data (SPMD)
el T-1-]=
Multiple Data (MPMD)

T' p task 1 task2 task3 .. taskn

task 1 task2 task 3 .. taskn

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

14

Programming Paradigms

Shared memory model - Threads, OpenMP,
CUDA

Message passing model - MPI

15

Data Parallelism and Domain

Decomposition
Given data divided across the processing
entitites

Each process owns and computes a portion
of the data — owner-computes rule

Multi-dimensional domain in simulations
divided into subdomains equal to processing
entities

This Is called domain decomposition

16

Domain decomposition and Process

Grids

Process grid used to specify domain
decomposition

The given P processes arranged in multi-
dimensions forming a process grid

The domain of the problem divided into
process grid

17

Illustrations

Process grid

2-D domain decomposed

using the process grid

3-D domain decomposed

using the process grid

LT T]

1 x5

2x4

18

Data Distributions

For dividing the data in a dimension using the
processes in a dimension, data distribution
schemes are followed

Common data distributions:

o Block: for regular —
computations <1 ToTt]2ToTi2Tol1 2ot [2To]1]2
| ala|sl3lalsl3lal5]34]5]3]4]5
o Block-cyclic: when ol1lzloltizloltzlolilzlol1]2
there is load J14(513(4(5|3[4[5(3[4]|5(3(4]5
imbalance across '1;13[;1921132113!11?
ala|sl3lalsl3lal5]34]5]3]4]5
space ol12loTi2loli2Tol12lol]2
alalsl3lals3lals5]314]5]3]4]5

—_
O

	Slide 1
	Slide 2: Parallel Programming and Challenges
	Slide 3: Challenges
	Slide 4: How do we evaluate a parallel program?
	Slide 5: Speedups and efficiency
	Slide 6: Limitations on speedup – Amdahl’s law
	Slide 7: Gustafson’s Law
	Slide 8: Roofline performance model
	Slide 9: Roofline performance model
	Slide 10: Roofline performance model graph
	Slide 11: Roofline performance model
	Slide 12: Roofline performance model
	Slide 13: Parallel programming classification and steps
	Slide 14: Parallel Program Models
	Slide 15: Programming Paradigms
	Slide 16: Data Parallelism and Domain Decomposition
	Slide 17: Domain decomposition and Process Grids
	Slide 18: Illustrations
	Slide 19: Data Distributions

