
Parallelization Principles

Sathish Vadhiyar



2

Parallel Programming and Challenges

◼ Recall the advantages and motivation of 
parallelism

◼ But parallel programs incur overheads not 
seen in sequential programs
❑ Communication delay

❑ Idling

❑ Synchronization



3

Challenges

P0

P1

Idle time
Computation

Communication

Synchronization



4

How do we evaluate a parallel program?

◼ Execution time, Tp

◼ Speedup, S
❑ S(p, n) =  T(1, n) / T(p, n)
❑ Usually, S(p, n) < p
❑ Sometimes S(p, n) > p (superlinear speedup)

◼ Efficiency, E
❑ E(p, n) = S(p, n)/p
❑ Usually, E(p, n) < 1
❑ Sometimes, greater than 1

◼ Scalability – Limitations in parallel computing, 
relation to n and p.

          



5

Speedups and efficiency

Ideal p

S

Practical

p

E



6

Limitations on speedup – Amdahl’s law

◼ Amdahl's law states that the performance 
improvement to be gained from using some faster 
mode of execution is limited by the fraction of 
the time the faster mode can be used. 

◼ Overall speedup in terms of fractions of 
computation time with and without enhancement, 
% increase in enhancement.

◼ Places a limit on the speedup due to parallelism.
◼ Speedup = 1
   (fs + (fp/P))



Gustafson’s Law

◼ Increase problem size proportionally so as to 

keep the overall time constant

◼ The scaling keeping the problem size 

constant (Amdahl’s law) is called strong 

scaling

◼ The scaling due to increasing problem size is 

called weak scaling

7



Roofline performance model

◼ A model that relates processor performance 

to off-chip memory traffic.

◼ Ties together floating-point performance, 

operational intensity and memory 

performance in a 2D graph.

8



Roofline performance model

◼ Gives a bound on the performance of an 

application on a particular architecture

◼ Helps to categorize the code’s performance 

as memory-bound or performance-bound

◼ Depends on three parameters

❑ Peak performance of a machine, Ppeak (FLOP/s)

❑ Memory bandwidth of the architecture, Bs 

(Bytes/s)

❑ Computation intensity of the code, I (FLOP/Byte) 

– operations per byte of DRAM traffic

◼ Performance of the code given by I x Bs
9



Roofline performance model graph

◼ Roofline: An Insightful Visual Performance Model for Multicore 

Architectures. S. Williams, A. Waterman, D. Patterson. 

Communications of ACM. Pages 65-76. Vol. 52, No. 4, April 2009.
10

Source: Below paper



Roofline performance model

◼ Horizontal line corresponds to peak floating 

point performance of the machine.

◼ The slope in the graph bounds the maximum 

floating point performance the memory 

system of the computer can support for a 

given operational intensity.

◼ Intersection of the two lines – At the point of 

peak computational performance and peak 

memory bandwidth

11



Roofline performance model

◼ For a given kernel, its operational intensity 

defines a point on the x-axis.

◼ The roofline sets a performance bound on the 

performance of the kernel depending on its 

operational intensity

◼ If the line through the kernel’s operational 

intensity hits the slanting line – kernel is said to 

be memory-bound.

◼ Else if it hits the horizontal line – computation-

bound.

◼ Ridge point x-coordinate – Minimum operational 

intensity required to achieve peak performance 12



PARALLEL PROGRAMMING 

CLASSIFICATION AND STEPS

13



14

Parallel Program Models

◼ Single Program 
Multiple Data (SPMD)

◼ Multiple Program 
Multiple Data (MPMD)

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/



15

Programming Paradigms

◼ Shared memory model – Threads, OpenMP, 
CUDA

◼ Message passing model – MPI



Data Parallelism and Domain 

Decomposition
◼ Given data divided across the processing 

entitites

◼ Each process owns and computes a portion 

of the data – owner-computes rule

◼ Multi-dimensional domain in simulations 

divided into subdomains equal to processing 

entities

◼ This is called domain decomposition

16



Domain decomposition and Process 

Grids
◼ Process grid used to specify domain 

decomposition

◼ The given P processes arranged in multi-

dimensions forming a process grid

◼ The domain of the problem divided into 

process grid

17



Illustrations

18

2x4



Data Distributions

◼ For dividing the data in a dimension using the 

processes in a dimension, data distribution 

schemes are followed

◼ Common data distributions:

❑ Block: for regular                                                

computations

❑ Block-cyclic: when                                                            

there is load                                                          

imbalance across                                                        

space

19


	Slide 1
	Slide 2: Parallel Programming and Challenges
	Slide 3: Challenges
	Slide 4: How do we evaluate a parallel program?
	Slide 5: Speedups and efficiency
	Slide 6: Limitations on speedup – Amdahl’s law
	Slide 7: Gustafson’s Law
	Slide 8: Roofline performance model
	Slide 9: Roofline performance model
	Slide 10: Roofline performance model graph
	Slide 11: Roofline performance model
	Slide 12: Roofline performance model
	Slide 13: Parallel programming classification and steps
	Slide 14: Parallel Program Models
	Slide 15: Programming Paradigms
	Slide 16: Data Parallelism and Domain Decomposition
	Slide 17: Domain decomposition and Process Grids
	Slide 18: Illustrations
	Slide 19: Data Distributions

