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What is TAU?

• It is a performance analysis tool that can work with various 
programs, serial or parallel.

• It can work with C, C++, Java, Fortran, Python and UPC.
• Provides detailed performance metrics 

(time, memory, I/O, etc).
• Developed & maintained by 

Performance Research Lab, University
of Oregon
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Why use TAU?

• Flexibility : 
– Works with various programming paradigms like MPI, OpenMP, 

CUDA, OpenACC, etc.
– Across various operating systems like windows, mac, linux 
– Provides numerous features, e.g., instrument specific routines, loops, 

track heap memory, I/O, etc.

• Visual Analysis : Integrated tools like paraprof, Jumpshot for 
visualizing performance data.
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What can TAU do?
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TAU Architecture
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TAU Workflow Overview
1. Set the required TAU_Makefile and other variables as 

environment variables.
– export TAU_MAKEFILE=/path/to/tau_makefile
– export TAU_METRICS=PAPI_L1_DCM

2. Instrument and compile the code using tau’s executables
– tau_cxx.sh your_source_code.cpp –o your_executable

3. Run the Program
– ./your_executable

4. Analyze the Data
– paraprof
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Installing TAU

• Download the TAU tarball
• Then 

– ./configure /add/various/features/you/want/tau/to/install
– make
– make install
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Tutorial

• Program to analyse - Cannon’s Matrix Multiplication
• We will see –

1. Serial Execution Time
2. Flat MPI Profile
3. Profile that uses different Counters
4. I/O
5. Callpath Profile
6. Communication Matrix
7. Trace
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Serial

Total Execution Time = 32 mins
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Flat Profile

• Profile : Profiling means calculating the execution time of 
functions, loops, etc. In other words, how much time is spent in a 
particular part of the program.

• Now,
– export TAU_MAKEFILE=/home/username/tau/x86_64/lib/Makefile.tau-

mpi-pdt
– export TAU_PROFILE=1
– tau_cxx.sh cannon.cpp –o cannon
– mpirun –n 16 ./cannon
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Continued…

• Once the execution is complete it will generate n files of type 
profile.x.x.x where n is the number of processes.

• To visualize
– paraprof --pack app.ppk : This will merge all the profile.x.x.x files into 

one profile file.
– Move it to your desktop and then : paraprof app.ppk 

11



Different Counters

• Similarly, we can profile with respect to different counters like 
data misses, cache misses and not just time.

• Before compiling set
– export TAU_METRICS=PAPI_FP_INS:PAPI_L1_ICM
– compile : tau_cxx.sh cannon.cpp –o cannon
– Run : mpirun –n 16 cannon
– paraprof 
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I/O
• We can also track how many bytes have been read and/or 

written.
• Two types of I/O that can be tracked 

– MPI I/O 
– POSIX I/O

• Code flow
– export TAU_MAKEFILE 

=/home/username/tau/x86_64/lib/Makefile.tau-mpi-pdt
– Compile
– Run
– paraprof 
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Callpath Profile

• Callpath Profile by name itself we can infer that it captures the 
execution path or the calling path followed by the program at 
the time of execution.

• Code
– export TAU_CALLPATH=1
– Compile 
– Run
– paraprof 
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Communication Matrix

• This feature captures the communication patterns. It displays 
the volume, frequency of messages exchanged between 
different processes in matrix format making it easy to identify 
communication hotspots, bottlenecks and imbalances in data 
transfers.

• Code flow
– export TAU_COMM_MATRIX=1
– Compile
– Run
– paraprof 
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Trace

• Trace shows you when the events take place on a timeline. We 
can use the Jumpshot visual analysis tool to see how the 
program executed.

• Code flow
– export TAU_TRACE=1
– Compile
– Run -> this will generate n (number of procs) event and trace files.
– tau_treemerge.pl – merges various event files and trace files.
– tau2slog2 tau.trc tau.edf –o trace.slog2
– jumpshot trace.slog2
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tau_exec and many more

• Compile as you already do using gcc, g++, python, etc.
• Run : mpirun –n 16 tau_exec ./cannon

• There are still many more features that even we haven’t 
explored e.g.,
– PerfExplorer
– Memory tracking/debugging
– Loop instrumentation, etc.
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Various Environment Variables
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Profiling and Tracing 
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Scalability Test Feature of TAU using PerfExplorer
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Relative Speedup of different functions
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Resources and References

• PPTs
– http://nic.uoregon.edu/~wspear/tau_sea14_tutorial.pdf
– https://www.sdsc.edu/Events/summerinstitute2012/2012/tau.pdf

• TAU : https://www.cs.uoregon.edu/research/tau/home.php
• PDT : https://www.cs.uoregon.edu/research/tau/pdt_releases/
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Thank You!
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