
Profiling and Performance Analysis for Programs 
using TAU – Tuning and Analysis Utilities

1

Image taken from Oregon PPT.

By : Tanya Gautam 
& 

Chaitanya Vinod Patil

http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf


What is TAU?

• It is a performance analysis tool that can work with various 
programs, serial or parallel.

• It can work with C, C++, Java, Fortran, Python and UPC.
• Provides detailed performance metrics 

(time, memory, I/O, etc).
• Developed & maintained by 

Performance Research Lab, University
of Oregon

2

Image taken from Oregon PPT.

http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf


Why use TAU?

• Flexibility : 
– Works with various programming paradigms like MPI, OpenMP, 

CUDA, OpenACC, etc.
– Across various operating systems like windows, mac, linux 
– Provides numerous features, e.g., instrument specific routines, loops, 

track heap memory, I/O, etc.

• Visual Analysis : Integrated tools like paraprof, Jumpshot for 
visualizing performance data.

3



What can TAU do?

Text taken from Oregon PPT. 4

http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf


TAU Architecture

Image taken from : Oregon PPT 5

http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf


TAU Workflow Overview
1. Set the required TAU_Makefile and other variables as 

environment variables.
– export TAU_MAKEFILE=/path/to/tau_makefile
– export TAU_METRICS=PAPI_L1_DCM

2. Instrument and compile the code using tau’s executables
– tau_cxx.sh your_source_code.cpp –o your_executable

3. Run the Program
– ./your_executable

4. Analyze the Data
– paraprof

6



Installing TAU

• Download the TAU tarball
• Then 

– ./configure /add/various/features/you/want/tau/to/install
– make
– make install

7



Tutorial

• Program to analyse - Cannon’s Matrix Multiplication
• We will see –

1. Serial Execution Time
2. Flat MPI Profile
3. Profile that uses different Counters
4. I/O
5. Callpath Profile
6. Communication Matrix
7. Trace

8



Serial

Total Execution Time = 32 mins

9



Flat Profile

• Profile : Profiling means calculating the execution time of 
functions, loops, etc. In other words, how much time is spent in a 
particular part of the program.

• Now,
– export TAU_MAKEFILE=/home/username/tau/x86_64/lib/Makefile.tau-

mpi-pdt
– export TAU_PROFILE=1
– tau_cxx.sh cannon.cpp –o cannon
– mpirun –n 16 ./cannon

10



Continued…

• Once the execution is complete it will generate n files of type 
profile.x.x.x where n is the number of processes.

• To visualize
– paraprof --pack app.ppk : This will merge all the profile.x.x.x files into 

one profile file.
– Move it to your desktop and then : paraprof app.ppk 

11



Different Counters

• Similarly, we can profile with respect to different counters like 
data misses, cache misses and not just time.

• Before compiling set
– export TAU_METRICS=PAPI_FP_INS:PAPI_L1_ICM
– compile : tau_cxx.sh cannon.cpp –o cannon
– Run : mpirun –n 16 cannon
– paraprof 

12



I/O
• We can also track how many bytes have been read and/or 

written.
• Two types of I/O that can be tracked 

– MPI I/O 
– POSIX I/O

• Code flow
– export TAU_MAKEFILE 

=/home/username/tau/x86_64/lib/Makefile.tau-mpi-pdt
– Compile
– Run
– paraprof 

13



Callpath Profile

• Callpath Profile by name itself we can infer that it captures the 
execution path or the calling path followed by the program at 
the time of execution.

• Code
– export TAU_CALLPATH=1
– Compile 
– Run
– paraprof 

14



Communication Matrix

• This feature captures the communication patterns. It displays 
the volume, frequency of messages exchanged between 
different processes in matrix format making it easy to identify 
communication hotspots, bottlenecks and imbalances in data 
transfers.

• Code flow
– export TAU_COMM_MATRIX=1
– Compile
– Run
– paraprof 

15



Trace

• Trace shows you when the events take place on a timeline. We 
can use the Jumpshot visual analysis tool to see how the 
program executed.

• Code flow
– export TAU_TRACE=1
– Compile
– Run -> this will generate n (number of procs) event and trace files.
– tau_treemerge.pl – merges various event files and trace files.
– tau2slog2 tau.trc tau.edf –o trace.slog2
– jumpshot trace.slog2

16



tau_exec and many more

• Compile as you already do using gcc, g++, python, etc.
• Run : mpirun –n 16 tau_exec ./cannon

• There are still many more features that even we haven’t 
explored e.g.,
– PerfExplorer
– Memory tracking/debugging
– Loop instrumentation, etc.

17



Various Environment Variables

18Image taken from : Oregon PPT

http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf


Profiling and Tracing 

19



20



21



22



23



Scalability Test Feature of TAU using PerfExplorer

24



Relative Speedup of different functions

25



Resources and References

• PPTs
– http://nic.uoregon.edu/~wspear/tau_sea14_tutorial.pdf
– https://www.sdsc.edu/Events/summerinstitute2012/2012/tau.pdf

• TAU : https://www.cs.uoregon.edu/research/tau/home.php
• PDT : https://www.cs.uoregon.edu/research/tau/pdt_releases/

26

http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf
http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf
https://www.sdsc.edu/Events/summerinstitute2012/2012/tau.pdf
https://www.sdsc.edu/Events/summerinstitute2012/2012/tau.pdf
https://www.cs.uoregon.edu/research/tau/home.php
https://www.cs.uoregon.edu/research/tau/pdt_releases/


Thank You!

27


	Profiling and Performance Analysis for Programs using TAU – Tuning and Analysis Utilities
	What is TAU?
	Why use TAU?
	What can TAU do?
	TAU Architecture
	TAU Workflow Overview
	Installing TAU
	Tutorial
	Serial
	Flat Profile
	Continued…
	Different Counters
	I/O
	Callpath Profile
	Communication Matrix
	Trace
	tau_exec and many more
	Various Environment Variables
	Profiling and Tracing 
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Scalability Test Feature of TAU using PerfExplorer
	Relative Speedup of different functions
	Resources and References
	Thank You!

