using TAU — Tuning and Analysis Utilities

By : Tanya Gautam

&

Image taken from Oregon PPT. i)
& & Chaitanya V

http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf

It is a performance analysis tool that can work with
programs, serial or parallel.

It can work with C, C++, Java, Fortran, Python and UPC.
Provides detailed performance metrics
(time, memory, 1/0, etc).

Developed & maintained by
Performance Research Lab, University
of Oregon

Image taken from Oregon PPT.

e
R
I

http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf

« Flexibility : .

— Works with various programming paradigms like MPI, OpenMP,
CUDA, OpenACC, etc. |

— Across various operating systems like windows, mac, linux

— Provides numerous features, e.g., instrument specific routines, loops,
track heap memory, 1/0, etc.

* Visual Analysis : Integrated tools like paraprof, Jumpshot fo
visualizing performance data.

What can TAU do?

How much time is spent in each application routine and outer loops?
Within loops, what is the contribution of each statement?

How many instructions are executed in these code regions?
Floating point, Level 1 and 2 data cache misses, hits, branches taken?

What is the memory usage of the code? When and where is memory
allocated/de-allocated? Are there any memory leaks?

What are the I/O characteristics of the code? What is the peak read
and write bandwidth of individual calls, total volume?

What is the contribution of each phase of the program? What is the
time wasted/spent waiting for collectives, and I/O operations in
Initialization, Computation, 1/O phases?

How does the application scale? What is the efficiency, runtime
breakdown of performance across different core counts?

Text taken from Oregon PPT.

http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf

TAU Architecture

(TAU Architecture]

/Instrumentation ~Measurement Analysis B

o C, C++, Fortran atic/dynamic
o Python, UPC, Java : TC basic block, loo :
o Robust parsers (PDT) thr mmun
Wrapping : — ;
Llnki[mahwn(mpn ’-’
o Wrapper generat :

o Preloading =

oDynmnic(Dyri - " H

Image taken from : Oregon PPT

http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf

TAU Workflow Overview

1. Set the required TAU_Makefile and other variables as |
environment variables. T~

— export TAU_MAKEFILE=/path/to/tau_makefile |
— export TAU_METRICS=PAPI L1 DCM ‘
2. Instrument and compile the code using tau’s executables

— tau_cxx.sh your source_code.cpp —o0 your_executable

3. Run the Program

— ./your_executable

4. Analyze the Data
— paraprof

Installing TAU

e Download the TAU tarball
* Then

— ./configure /add/various/features/you/want/tau/to/install

— make
— make install

* Program to analyse - Cannon’s Matrix Multiplication

e We will see —
1.

N o Uk WwN

Serial Execution Time

Flat MPI Profile

Profile that uses different Counters
/0

Callpath Profile

Communication Matrix

Trace

|
\
\
Metric: TIME
walue: Exclusive
Units: seconds

\
|
1043, 040 | matrix_multiphelint®, int*, int*, int} [{/scratchtanyagautam/cannonscannongdis.cpp} {11,03]

1e436de e o] main [{/scratchtanyagautam/cannon/cannondd00.cpp} {26,03] == matrix_multiply{int*, int*, int* int} [{/scratchitanyagautam/cannon/cannonéd00.cppl {11,07]

Total Execution Time = 32 mins

Flat Profile

* Profile : Profiling means calculating the execution time of | T
functions, loops, etc. In other words, how much time is spentin a
particular part of the program. |

* Now, |
— export TAU_MAKEFILE=/home/username/tau/x86 64/lib/Makefile.tau-
mpi-pdt
— export TAU_PROFILE=1
— tau_cxx.sh cannon.cpp —o cannon

— mpirun —n 16 ./cannon

Continued...

profile.x.x.x where n is the number of processes.

* Once the execution is complete it will generate n files of typﬁ B

 To visualize

— paraprof --pack app.ppk : This will merge all the profile.x.x.x files ir
one profile file.

— Move it to your desktop and then : paraprof app.ppk

Different Counters

* Similarly, we can profile with respect to different counters Iikf
data misses, cache misses and not just time.

/

* Before compiling set
— export TAU_METRICS=PAPI_FP_INS:PAPI_L1 _ICM
— compile : tau_cxx.sh cannon.cpp —o cannon
— Run : mpirun —n 16 cannon
— paraprof

* We can also track how many bytes have been read and/or
written.

* Two types of I/O that can be tracked
— MPI I/O
— POSIX 1/0

 Code flow

— export TAU_MAKEFILE
=/home/username/tau/x86_64/lib/Makefile.tau-mpi-pdt

— Compile
— Run
— paraprof

Callpath Profile

ures the ——

* Callpath Profile by name itself we can infer that it cap jt
m a

execution path or the calling path followed by the progt
the time of execution.

* Code
— export TAU_CALLPATH=1
— Compile

— Run
— paraprof

Communication Matrix

* This feature captures the communication patterns. It displays
the volume, frequency of messages exchanged between |
different processes in matrix format making it easy to ic

communication hotspots, bottlenecks and imbalances in ¢
transfers.

* Code flow
— export TAU_COMM_MATRIX=1
— Compile
— Run
— paraprof

* Trace shows you when the events take place on a timeline. We
can use the Jumpshot visual analysis tool to see how the T
program executed.

* Code flow
— export TAU_TRACE=1
— Compile
— Run -> this will generate n (number of procs) event and trace files.
— tau_treemerge.pl — merges various event files and trace files.
— tau2slog?2 tau.trc tau.edf —o trace.slog?2
— jumpshot trace.slog2

tau_exec and many more

 Compile as you already do using gcc, g++, python, ¢
* Run : mpirun —n 16 tau_exec ./cannon

* There are still many more features that even we haven’t
explored e.g.,
— PerfExplorer
— Memory tracking/debugging

— Loop instrumentation, etc.

Various Environment Variables

Environment Variable Default Description

TAU TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_LEAKS 0 Setting to 1 turns on leak detection (for use with —optMemDbg or tau_exec)

TAU_MEMDBG_PROTECT_ABOVE 0 Setting to 1 turns on bounds checking for dynamically allocated arrays. (Use
with —optMemDbg or tau_exec —memory_debug).

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine
information, setting to 1 generates flat profile and context events have just
parent information (e.g., Heap Entry: foo)

TAU_TRACK |I0_PARAMS 0 Setting to 1 with —optTracklO or tau_exec —io captures arguments of I/0 calls

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU _COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Enabled by default to remove instrumentation
in lightweight routines that are called frequently

TAU THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000
times and takes less than 10 usec of inclusive time per call

TAU_COMPENSATE 0 Setting to 1 enables runtime compensation of instrumentation overhead

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,

TIME:P_VIRTUAL_TIME:PAPI_FP_INS:PAPI_NATIVE_<event>\\:<subevent>)

Image taken from : Oregon PPT

/

I

http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf

Profiling and Tracing

Profiling

Value: Exclusive
Units: seconds

9647.318

LEQ_IKSWEEPT
4357.213 I LEC BICGS0T

2669.887 L. | LEQ_MATVECT
1777.752 [SOLVE_SPECIES_EQ
1417.986 || SOLVE_LIN_EQ
1028.448 gl PHYSICAL_PROP
783.402 [| RRATES
682.376] LEQ_MSOLVET
530.858 [l INIT_AB_M
463.788 | | CALC_MASS_FLUX_SPHR
446.025 [] INIT_MU_S
421.747 [] CALC_RESID_S
381.363 [] SOLVE_ENERGY_EQ
371.199 [] SOURCE_PHI
258.829 ! DRAG_GS

Profiling shows you how much
(total) time was spent in each routine

Tracing

take place on a timeline

N . .

Tracing shows you when the events

T’

oop Level Instrumentation

Goal: What loops account for the most time? How much?

Flat profile with wallclock time with loop instrumentation:

Metric: GET_TIME_OF_DAY
Value: Exclusive
Units: microseconds

1729975.333 | | Loop: MULTIPLY_MATRICES [{matmult.f90} {31,9}-{36,14}]
443194 [MP!_Recv()
81095 [L] MAIN
49569 [MPI_Bcast()
45669 [] Loop: MAIN [{matmult.fa0} {86,9}-{106,14}]
12412 | MPI_Send()
8959 | Loop: INITIALIZE [{matmult f90} {17,9}-{21,14}]
8953 | Loop: INITIALIZE [{matmult f90} {10,9}-{14,14}]
5609.2 | MPI_Finalize()
2932.667 | MULTIPLY_MATRICES
2577.667 | Loop: MAIN [{matmult f90} {117,9}-{128,14}]
2091.8 | MPI_Barrier)
1875.667 | Loop: MAIN [{matmult f90} {112,9}-{115,14}]
1833 | Loop: MAIN [{matmult.f90} {71,9}-{74,14}]
107 | Loop: MAIN [{matmult.f90} {77,9}-{84,14}]
30 | INITIALIZE
14.25 | MPI Comm rank(

Callpath Profile

aRaRa]

X n,ct, 0,0,0 - callpath-all/scaling/flash/taudata/disk2 /mnt/

File Options Windows Help

Metric Name: Time
Value Type: exclusive

26.474% MODULEHYDROSWEEP:HYDRO_SWEEP =~
26.474% [| FLASH => EVOLVE =3> HYDRO:HYDRO_3D = > MODULEHYDROSWEEP:HYDRO_SWEEP
24.556% NN [0 DULEHYDRO_1D:HYDRO_1D 1
24.556% NG Fl ASH = EVOLVE =3 HYDROZHYDRO_3D =3> MODULEHYDROSWEEP:HYDRO_SWEEP =3 MODULEHYDRO_1D:HYDRO_1D
14.351% [| MODULEINTRFCZINTRFC

14.351% [FLASH = > EVOLVE = HYDROZHYDRO_3D
4,501% [MODULEEOS3D:E0SID
4.427% CI MPI_Ssend §
3.678% :l FLASH => EVOLVYE => HYDRO:HYDRO_3D => MODULEHYDROSWEEP:HYDRO_SWEEP
3.536% I MPI_Allreduce(
2.727% I MPI_Waitall
2.242%] MODULEUPDATE_SOLN:UPDATE_SOLN
2.242% I FLASH => EVOLVE =3 HYDRO:HYDRO_3D => MODULEHYDROSWEEP:HYDRO_SWEEP = MODULEUPDATE_SOLN:UPDATE.SOLN
2.059%] AMR_GUARDCELL_CC_SRL
1.703% - FLASH = > EVOLVYE => HYDRO:HYDRO_3D = > MODULEHYDROSWEEP:HYDRO_SWEEP = > MESH_GUARDCELL = > AMR_GUARDCELL_SRL = > AMR_
1.56% [FLASH => EVOLVE =3> HYDRO:HYDRO_3D => MODULEHYDROSWEEP:HYDRO_SWEEP => MESH_GUARDCELL =3> AMR_GUARDCELL_SRL =3> AMR_

1.406% M FLASH == EVOLVE =3 MESH_UPDATE_GRID_REFINEMENT = > MESH_REFINE_DEREFINE = AMR_REFINE_DEREFINE => AMR_MORTON_ORDER =:>
1.361% [FLASH = TIMESTEP = MPI_Allreduced

1.319% M AMR_RESTRICT_UNK_FUN

1.277% [J AMR_PROLONG_GEN_UNK_FUN

1.093% [JFLASH => EVOLVE => HYDRO:HYDRO_3D = > MODULEHYDROSWEEP:HYDRO_SWEEP = > MESH_GUARDCELL
1.077% [J ABUNDANCE_RESTRICT

1.077% D FLASH =3 EVOLVE => HYDRO:HYDRO_3D =3 MODULEHYDROSWEEP:HYDRO_SWEEP => ABUNDANCE RESTRICT
1.064% [l DEASETREE:DBASENEIGHEORELOCKLIST
1% H FLASH => EVOLVE == HYDRO:ZHYDRO_3D =:> MODULEHYDROSWEEP:HYDRO_SWEEP == MESH_GUARDCELL =3 AMR_RESTRICT
0.987% M FLASH == EVOLVE => HYDRO:HYDRO_3D => MODULEHYDROSWEEP:HYDRO_SWEEP == MESH_FLUX_COMNSERVE
0.96% [JFLASH =3 EVOLVE => HYDRO:HYDRO_3D => MODULEHYDROSWEEP:HYDRO_SWEEP => MESH_GUARDCELL
0.916% B MPI_Barrierd
0.807% M FLASH =3 EVOLVE =3 HYDRO:HYDRO_3D => MODULEHYDROSWEEP:HYDRO_SWEEP => MESH_GUARDCELL = TOT_END
0.806% [AMR_PROLONG_UNK_FUN
0.735% l AMR_DIAGONAL_PATCH
0.699% [] DIFFUSE
0.699% [FLASH =3 EVOLVE => HYDRO:HYDRO_3D =3> MODULEHYDROSWEEP:HYDRO_SWEEF = DIFFUSE
0.671% [AMR_RESTRICT_RED
0.671% M FLASH =3 EVOLVE => HYDRO:HYDRO_3D =3> MODULEHYDROSWEEP:HYDRO_SWEEP =3 MESH_FLUX_CONSERVE = AMR_FLUX_CONSERVE UDT
0.657% [0 FLASH =3 EVOLVE => HYDRO:HYDRO_3D => MODULEHYDROSWEEP:HYDRO_SWEEP = MESH_GUARDCELL => AMR_GUARDCELL SRL =3 AMR_ /
0.638% [FLASH == EVOLVE => MESH_UPDATE_GRID_REFINEMENT => MARK_GRID_REFINEMENT =: MPI_Barrier \
0.61% [l FLASH => EVOLVE == HYDRO:HYDRO_3D =: MODULEHYDROSWEEP:HYDRO_SWEEP = MESH_GUARDCELL =3 AMR_GUARDCELL_.C_.TO_F == A
0.556% I FLASH =:> EVOLVE => HYDRO:HYDRO_3D =3> MODULEHYDROSWEEF:HYDRO_SWEEF => MESH_GUARDCELL => AMR_GUARDCELL.C_.TO.F => A
0.508% [TOT_BND

0.454% [FLASH => EVOLVE = > MESH_UPDATE_GRID_REFINEMENT = > MARK_GRID_REFINEMENT => MODULEEOS3D:EQS3D
il I

= > MODULEHYDROSWEEP:HYDRO_SWEEP => MODULEHYDRO_1D:HYDRO_1D == MODULEINTRFCIINT

= MODULEEOS3ID:EQS3D

=> AMR_GUARDCELL_ C_TO_F =3> A

= AMR_RESTRI
== AMR_FLUX_CONSERVE_UDT
=> AMR_GUARDCELL_ C_TO_F =3 A

= DBASETREE:DEAS

Mo,

Communication Matrix Display

Goal: What is the volume of inter-process communication? Along N
which calling path?

DISPLAY OPTIONS
Callpath:
All Paths hd

ME EYTES

Runtime Breakdown

8 00 TAU/PerfExplorer: Total TIME Breakdown

Total TIME Breakdown for IRMHD:Scaling_BGP

105
100
95
90
85
80
75
70
65
&0
55
50
45
40
351
30
25
20
15
10
5
0-

Percentage of Total TIME

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000 65,000
Number of Processors

& ADVANCE_DIFFUSION & CCHEBYB A CCHEBYF CHEBDIFF & DERIVE » ENERGY # MPIFFT::CRFFT2D_MPI & MPIFFT::HC2R & MPIFFT::R2ZHC
& MPIFFT::RCFFT2D_MP1 & MPIFFT::REORDER_COMPLEX & MPI_Allreduce() & MPI_Alltoall() & MPI_Barrier() & MPI_Init() & MPL_Waitall()
A RK3NL::ERK3_STAGE & WDERIVS other

Scalability Test Feature of TAU using PerfExplorer

Total TIME Bar Chart for Experlment ScallngTestByTlme

JmE Wl EE

— 1

s .
-

64

128

256

528

s u
i 1) 0
s []

mBULK FLUX MOD::BULK FLUX TILE =mDISTRIBUTE MOD::MP_GATHER3D = DISTRIBUTE _MOD::MP_SCATTER2D
DISTRIBUTE_MOD::MP_SCATTER3D = LMD_BKPP_MOD::LMD_BKPP_TILE LMD_SKPP_MOD::LMD_SKPP_TILE
LMD SWFRAC TILE = MPI Collective Sync m MPI_Bcast() m MPIl_Finalize() m MPI_Init() = MPI_Send() = MPI_Wait()

= MP_EXCHANGE_MOD::MP_EXCHANGE2D = NF_FREAD3D_MOD::NF_FREAD3D = NF_FWRITE3D_MOD::NF_FWRITE3D

m PRE_STEP3D_MOD::PRE_STEP3D_TILE SET_AVG_MOD::SET_AVG _TILE mSTEP2D_MOD::STEP2D_TILE
STEP3D_T_MOD::STEP3D_T_TILE = T3DMIX_MOD::T3DMIX4_TILE mUV3DMIX_MOD::UV3DMIX2 TILE mother

Number of Processors

1024

2064

Relative Speedup of different functions

Relative Speedup by Event for Experiment-ScalingTestByTime:TIME

32.5
30.0
27.5 4
25.0
22.5
20.0
()
E 17.5 4
=
15.0 4
12.5 4
10.0 -
7.5
5.0 4
2.5 : :
0.0 . - . -
o] 250 500 750 1,000 1,250 1,500 1,750 2,000
Number of Processors
BULK_FLUX_ MOD::BULK_FLUX_TILE DISTRIBUTE_MOD::MP_GATHER3D = DISTRIBUTE_MOD::MP_SCATTER2D
DISTRIBUTE_MOD::MP_SCATTER3D -=-LMD_ BKPP_MOD::LMD_BKPP_TILE LMD_SKPP_MOD::LMD_SKPP_TILE
— LMD_SWFRAC_TILE -— MPI Collective Sync MPI_Bcast() — MPI_Finalize() = MPI_Init() = MPIl_Send() MPI_Wait()
MP_EXCHANGE_MOD::MP_EXCHANGE2D —-— NF_FREAD3D_MOD::NF_FREAD3D NF_FWRITE3D_MOD::NF_FWRITE3D

— PRE_STEP3D MOD::PRE_STEP3D_TILE SET AVG MOD::SET AVG TILE -+ STEP2D MOD::STEP2D TILE
—~STEP3D T _MOD::STEP3D T TILE -= T3DMIX_MOD::T3DMIX4 TILE - UV3DMIX MOD::UV3DMIX2 TILE -+other — ideal

Resources and References

* PPTs
— http://nic.uoregon.edu/~wspear/tau seald tutorial.pdf

http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf
http://nic.uoregon.edu/%7Ewspear/tau_sea14_tutorial.pdf
https://www.sdsc.edu/Events/summerinstitute2012/2012/tau.pdf
https://www.sdsc.edu/Events/summerinstitute2012/2012/tau.pdf
https://www.cs.uoregon.edu/research/tau/home.php
https://www.cs.uoregon.edu/research/tau/pdt_releases/

Thank Youl!

	Profiling and Performance Analysis for Programs using TAU – Tuning and Analysis Utilities
	What is TAU?
	Why use TAU?
	What can TAU do?
	TAU Architecture
	TAU Workflow Overview
	Installing TAU
	Tutorial
	Serial
	Flat Profile
	Continued…
	Different Counters
	I/O
	Callpath Profile
	Communication Matrix
	Trace
	tau_exec and many more
	Various Environment Variables
	Profiling and Tracing
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Scalability Test Feature of TAU using PerfExplorer
	Relative Speedup of different functions
	Resources and References
	Thank You!

