Parallel Linear Algebra (Linear System of Equations)

Sathish Vadhiyar

Gaussian Elimination - Review

Version 1

for each column i
zero it out below the diagonal by adding multiples of row i to later rows

for $i=1$ to $n-1$

for each row j below row i
for $\mathrm{j}=\mathrm{i}+1$ to n
add a multiple of row i to row j
for $k=i$ to n

$$
A(j, k)=A(j, k)-A(j, i) / A(i, i) * A(i, k)
$$

Gaussian Elimination - Review

Version 2 - Remove $\mathbf{A}(\mathbf{j}, \mathbf{i}) / \mathbf{A}(\mathbf{i}, \mathbf{i})$ from inner loop

 for each column izero it out below the diagonal by adding multiples of row i to later rows

for $\mathrm{i}=1$ to $\mathrm{n}-1$

for each row j below row i
for $\mathrm{j}=\mathrm{i}+1$ to n
$m=A(j, i) / A(i, i)$
for $k=i$ to n

$$
A(j, k)=A(j, k)-m^{*} A(i, k)
$$

Gaussian Elimination - Review

Version 3 - Don't compute what we already know

 for each column izero it out below the diagonal by adding multiples of row i to later rows

for $\mathrm{i}=1$ to $\mathrm{n}-1$

for each row j below row i
for $\mathrm{j}=\mathrm{i}+1$ to n
$m=A(j, i) / A(i, i)$
for $k=i+1$ to n

$$
A(j, k)=A(j, k)-m^{*} A(i, k)
$$

Gaussian Elimination - Review

Version 4 - Store multipliers m below diagonals

 for each column izero it out below the diagonal by adding multiples of row i to later rows

for $\mathrm{i}=1$ to $\mathrm{n}-1$

for each row j below row i
for $\mathrm{j}=\mathrm{i}+1$ to n
$A(j, i)=A(j, i) / A(i, i)$
for $k=i+1$ to n
$A(j, k)=A(j, k)-A(j, i)^{*} A(i, k)$

GE - Runtime

\square Divisions

$$
1+2+3+\ldots(n-1)=n^{2} / 2 \text { (approx.) }
$$

\square Multiplications / subtractions

$$
1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+\ldots(n-1)^{2}=n^{3 / 3}-n^{2} / 2
$$

\square Total

$$
2 n^{3} / 3
$$

Parallel GE

$\square 1^{\text {st }}$ step -1 -D block partitioning along blocks of n columns by p processors

1D block partitioning - Steps

1. Divisions

$$
n^{2} / 2
$$

2. Broadcast

$$
x \log (p)+y \log (p-1)+z \log (p-3)+\ldots \log 1<
$$

3. Multiplications and Subtractions

$$
(n-1) n / p+(n-2) n / p+\ldots .1 \times 1=n^{3} / p \text { (approx.) }
$$

Runtime:

$$
<n^{2} / 2+n^{2} \log p+n^{3} / p
$$

2-D block

\square To speedup the divisions

2D block partitioning - Steps

1. Broadcast of (k, k) $\log Q$
2. Divisions
n²/Q (approx.)
3. Broadcast of multipliers

$$
x \log (P)+y \log (P-1)+z \log (P-2)+\ldots=n^{2} / Q \log P
$$

4. Multiplications and subtractions
n³/PQ (approx.)

Problem with block partitioning for GE

\square Once a block is finished, the corresponding processor remains idle for the rest of the execution
\square Solution? -

Onto cyclic

\square The block partitioning algorithms waste processor cycles. No load balancing throughout the algorithm.
 \square Onto cyclic

cyclic
Load balance

1-D block-cyclic
Load balance, block operations, but column factorization bottleneck

0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3
0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3
0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3
0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3

2-D block-cyclic
Has everything

Block cyclic

\square Having blocks in a processor can lead to block-based operations (block matrix multiply etc.)
\square Block based operations lead to high performance

GE: Miscellaneous GE with Partial Pivoting

\square 1D block-column partitioning: which is better? Column or row pivoting
-Column pivoting does not involve any extra steps since pivot search and exchange are done locally on each processor. $\mathrm{O}(\mathrm{n}-\mathrm{i}-1)$
-The exchange information is passed to the other processes by piggybacking with the multiplier information

- Row pivoting
- Involves distributed search and exchange $-O(n / P)+O(\log P)$
- 2D block partitioning: Can restrict the pivot search to limited number of columns

Triangular Solve - Unit Upper triangular matrix

\square Sequential Complexity - $O\left(n^{2}\right)$
\square Complexity of parallel algorithm with 2D block partitioning ($\mathrm{P}^{\left.0.5 * \mathrm{P}^{0.5} \text {) o(} \mathrm{n}^{2}\right) / \mathrm{P}^{0.5}}$

- Thus (parallel GE / parallel TS) < (sequential GE / sequential TS)
\square Overall (GE+TS) - O(n3/P)
\square Dense LU on GPUs

LU for Hybrid Multicore + GPU
Systems
(Tomov et al., Parallel Computing, 2010)
\square Assume the CPU host has 8 cores
\square Assume NxN matrix; Divided into blocks of size NB;
\square Split such that the first $\mathrm{N}-7 \mathrm{NB}$ columns are on GPU memory
\square Last 7NB on the host

Load Splitting for Hybrid LU

Steps

Current panel is downloaded to CPU; the dark blue part in the figure

- Panel factored on CPU and result sent to GPU to update trailing sub-matrix; the red part;
\square GPU updates the first NB columns of the trailing submatrix
\square Updated panel sent to CPU; Asynchronously factored on CPU while the GPU updates the rest of the trailing submatrix
\square The rest of the 7 host cores update the last 7 NB host columns

Parallel Dense Matrix Computations - Tile-Based Cholesky and QR

- For heterogeneous architectures
- Communication-avoiding algorithms

Heterogeneous Tile Algorithms for Heterogeneous Architectures General Strategy
\square Hetrogeneous tile algorithms
\square Heterogeneous multi-level blockcyclic data distribution
\square Source:
\square Paper: "F. Song, S. Tomov, and J. Dongarra. Enabling and Scaling Matrix Computations on Heterogeneous Multi-core and Multi-

General Strategy

\square Small tiles on the host, large tiles on the GPUs
\square A two-level 1-D block-cyclic method
\square First map a matrix to only CPUs using a 1-D column block cyclic distribution, and then cut out slices for GPUs

Hybrid Tile Data Layout

\square Divide a matrix into a set of small and large tiles
\square At the top level, divid large square tiles of s
\square Subdivide each top le

(a)

(b) BxB into a number of small rectangular tiles of size $B x b$, and a remaining tile
\square Figure (a) - divide the 12×12 matrix into four 6×6 tiles, then divide each

Heterogeneous Tile Cholesky Factorization

\square Each a_{ij} represents a small tile of size $B \times b$, and each $A_{i j}$ represents a large tile of size $B x(B-b(s-1))$

Heterogeneous Tile Cholesky Factorization - Illustration

\square Matrix divided into 3×3 tiles, i.e., $p=3$
\square Each tile divided into one small and one large tile, i.e., s=2
\square Factorization goes through six (pxs) iterations

Illustration Continued

\square Colvo I

—POTF2' $\left(A_{t k}, L_{t k}\right)$: Given a matrix $A_{t k}$ of $m \times n$ and $m \geq n$, we let $A_{t k}=\binom{A_{t k 1}}{A_{t k 2}}$ such that $A_{t k 1}$ is of $n \times$ n, and $A_{t k 2}$ is of $(m-n) \times n$. We also let $L_{t k}=$ $\binom{L_{t k 1}}{L_{t k 2}}$. POTF2' computes $\binom{L_{t k 1}}{L_{t k 2}}$ by solving $L_{t k 1}=$ $\operatorname{Cholesky}\left(A_{t k 1}\right)$ and $L_{t k 2}=A_{t k 2} L_{t k 1}^{-T}$.

Illustration Continued

$\operatorname{TRSM}\left(L_{t k}, A_{i k}, L_{i k}\right)$ computes $L_{i k}=A_{i k} L_{t k}^{-T}$. the tWO tiles below L11

Illustration Continued

\square Apply GSMMs to update all tiles Second iteration

Heterogeneous 1D Column Block Cyclic Distribution

Figure 7: Heterogeneous 1-D column block cyclic data distribution. (a) The matrix A divided by a two-level partitioning method. (p, s) determines a matrix partition. (b) Allocation of a matrix of 6×12 rectangular tiles (i.e., $p=6, s=2$) to a host and three GPUs: $\mathrm{h}, \mathrm{G}_{1}, \mathrm{G}_{2}$, and G_{3}.

QR Factorization, TSQR, CAQR

\square Sources, Credits, some slides taken from:
\square Slides on "Communication Avoiding QR and LU", CS 294 lecture slides, Laura Grigori, ALPINES INRIA Rocquencourt - LJLL, UPMC
\square https://who.rocq.inria.fr/Laura.Grigori /TeachingDocs/CS-
294 Spr2016/Slides CS-
294 Spr2016/CS294 Spr16 CALUQR ndf

General scheme for

QR factorization by Householder transformations

- Apply Householder transformations to annihilate subdiagonal entries

$$
\begin{aligned}
A & =\left(\begin{array}{llll}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right)=H_{1}\left(\begin{array}{llll}
x & x & x & x \\
0 & x & x & x \\
0 & x & x & x \\
0 & x & x & x
\end{array}\right)=H_{1}\left(\begin{array}{ll}
1 & \tilde{H}_{2}
\end{array}\right)\left(\begin{array}{llll}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
0 & 0 & x & x
\end{array}\right) \\
& =H_{1} H_{2}\left(\begin{array}{lll}
1 & 1 & \\
& & \tilde{H}_{3}
\end{array}\right)\left(\begin{array}{llll}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
0 & 0 & 0 & x
\end{array}\right)=H_{1} H_{2} H_{3} R=Q R
\end{aligned}
$$

- For A of size $m \times n$, the factorization can be written as:

$$
\begin{aligned}
& H_{n} H_{n-1} \ldots H_{2} H_{1} A=R \rightarrow A=\left(H_{n} H_{n-1} \ldots H_{2} H_{1}\right)^{T} R \\
& Q=H_{1} H_{2} \ldots H_{n}
\end{aligned}
$$

Compact representation for Q

- Orthogonal factor Q can be represented implicitly as

$$
\begin{aligned}
& Q=H_{1} H_{2} \ldots H_{b}=\left(I-\tau_{1} h_{1} h_{1}^{T}\right) \ldots\left(I-\tau_{b} h_{b} h_{b}^{T}\right)=I-Y T Y^{T} \text {, where } \\
& Y=\left(\begin{array}{llll}
h_{1} & h_{2} & \ldots & h_{b}
\end{array}\right)
\end{aligned}
$$

- Example for $b=2$:

$$
Y=\left(h_{1} \mid h_{2}\right), \quad \mathrm{T}=\left(\begin{array}{cc}
\boldsymbol{\tau}_{1} & -\boldsymbol{\tau}_{1} h_{1}^{T} h_{2} \tau_{2} \\
& \tau_{2}
\end{array}\right)
$$

Algebra of block QR factorization

Matrix A of size $n \times n$ is partitioned as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \text {, where } A_{11} \text { is } b \times b
$$

Block QR algebra

The first step of the block QR factorization algorithm computes:

$$
Q_{1}^{T} A=\left[\begin{array}{ll}
R_{11} & R_{12} \\
& A_{22}^{1}
\end{array}\right]
$$

The algorithm continues recursively on the trailing matrix $\mathrm{A}_{22}{ }^{1}$

Block QR factorization

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)=Q_{1}\left(\begin{array}{cc}
R_{11} & R_{12} \\
& A_{22}{ }^{1}
\end{array}\right)
$$

Block QR algebra:

1. Compute panel factorization:

$$
\binom{\mathrm{A}_{11}}{\mathrm{~A}_{12}}=\mathrm{Q}_{1}\left(\begin{array}{l}
R_{11}
\end{array}\right), \quad Q_{1}=H_{1} H_{2} \ldots H_{b}
$$

2. Compute the compact representation:

$$
\mathrm{Q}_{1}=I-Y_{1} T_{1} Y_{1}^{T}
$$

3. Update the trailing matrix:

$$
\left(I-Y_{1} T_{1}^{T} Y_{1}^{T}\right)\binom{A_{12}}{A_{22}}=\binom{A_{12}}{A_{22}}-Y_{1}\left(T_{1}^{T}\left(Y_{1}^{T}\binom{A_{12}}{A_{22}}\right)\right)=\binom{R_{12}}{A_{22}^{1}}
$$

4. The algorithm continues recursively on the trailing matrix.

QR Factorization for Tall and Skinny Matrices (TSQR)

\square Parallelization using Binary Tree

Parallel TSQR Factorization on a Binary Tree of Four Processors

Figure 1: Execution of the parallel TSQR factorization on a binary tree of four processors. The gray boxes indicate where local QR factorizations take place. The Q and R factors each have two subscripts: the first is the sequence number within that stage, and the second is the stage number.

Parallel TSQR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker, Patterson, 02

Steps - Stage 0

$$
A=\left(\begin{array}{l}
A_{0} \\
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right)
$$

$$
\left(\begin{array}{l}
A_{0} \\
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right)=\left(\begin{array}{l}
Q_{00} R_{00} \\
Q_{10} R_{10} \\
Q_{20} R_{20} \\
Q_{30} R_{30}
\end{array}\right) .
$$

$$
A=\left(\begin{array}{l}
Q_{00} R_{00} \\
Q_{10} R_{10} \\
Q_{20} R_{20} \\
Q_{30} R_{30}
\end{array}\right)=\left(\begin{array}{l|l|l|l}
Q_{00} & & & \\
\hline & Q_{10} & & \\
\hline & & Q_{20} & \\
\hline & & & Q_{30}
\end{array}\right) \cdot\left(\begin{array}{c}
R_{00} \\
\hline R_{10} \\
\hline R_{20} \\
\hline R_{30}
\end{array}\right)
$$

Steps

\square Stagae $1-$

$$
\left(\begin{array}{l}
R_{00} \\
R_{10} \\
R_{20} \\
R_{30}
\end{array}\right)=\binom{\binom{R_{00}}{R_{10}}}{\binom{R_{20}}{R_{30}}}=\binom{Q_{01} R_{01}}{Q_{11} R_{11}} .
$$

\square Compl

$$
A=\left(\begin{array}{l}
A_{0} \\
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right)=\left(\begin{array}{l|l|l|l}
Q_{00} & & & \\
\hline & Q_{10} & & \\
\hline & & Q_{20} & \\
\hline
\end{array}\right) \cdot\left(\begin{array}{l|l}
Q_{01} & \\
\hline & Q_{11}
\end{array}\right) \cdot Q_{02} \cdot R_{02},
$$

QR on General Trees using 16 blocks and 4 processors

Flexibility of TSQR and CAQR algorithms

Sequential: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \xrightarrow{ } R_{00} \longrightarrow R_{01} \longrightarrow R_{02} \longrightarrow R_{03}$
Dual Core: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \xrightarrow{\longrightarrow} R_{00} \longrightarrow R_{01} \longrightarrow R_{02} \longrightarrow R_{11} \longrightarrow R_{03}$
Reduction tree will depend on the underlying architecture, could be chosen dynamically

TSQR: QR factorization of a tall skinny matrix using Householder transformations

- QR decomposition of $m \times b$ matrix W, $m \gg b$
- P processors, block row layout
- Classic Parallel Algorithm
- Compute Householder vector for each column
- Number of messages $\propto \mathrm{b} \log \mathrm{P}$
- Communication Avoiding Algorithm
- Reduction operation, with QR as operator
- Number of messages $\propto \log P$

$$
W=\left[\begin{array}{l}
w_{0} \\
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right] \rightarrow\left[\begin{array}{l}
R_{00} \\
R_{10} \\
R_{20} \\
R_{30}
\end{array}\right] \rightarrow R_{01} \rightarrow R_{11} \longrightarrow R_{02}
$$

Parallel CAQR (Communicationavoiding QR)

\square Uses parallel TSQR
\square mxn matrix distributed in 2D block-cyclic distribution with block size b
\square At each step of factorization, TSQR is used to factor a panel of columns
\square Followed by trailing matrix update - applying the Householder vectors to the rest of the matrix
\square The update corresponding to the QR factorization at the leaves of the TSQR tree is performed locally on every processor
\square The updates corresponding to the upper levels of the TSQR tree are performed between groups of neighboring trailing matrix processors

Parallel CAQR

\square Only one of the trailing matrix processors in each neighbour group continues to be involved in successive trailing matrix updates
\square Allows overlap of computation and communication - uninvolved processors can finish their computations in parallel with successive reduction stages

Algebra of TSQR

Parallel: $\left.\quad w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ w_{2} \\ W_{3}\end{array}\right] \xrightarrow{\rightarrow} \begin{array}{ll}R_{00} \\ R_{10} \\ R_{20} \\ R_{30}\end{array}\right] R_{01} \longrightarrow R_{11} \longrightarrow R_{02}$

CAQR

