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Gaussian Elimination - Review

Version 1
for each column i
zero it out below the diagonal by adding multiples of row i to 

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
add a multiple of row i to row j
for k = i to n
A(j, k) = A(j, k) – A(j, i)/A(i, i) * A(i, k)
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Gaussian Elimination - Review

Version 2 – Remove A(j, i)/A(i, i) from inner loop
for each column i
zero it out below the diagonal by adding multiples of row i to 

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i to n
A(j, k) = A(j, k) – m* A(i, k)
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Gaussian Elimination - Review

Version 3 – Don’t compute what we already know
for each column i
zero it out below the diagonal by adding multiples of row i to 

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) – m* A(i, k)
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Gaussian Elimination - Review

Version 4 – Store multipliers m below diagonals
for each column i
zero it out below the diagonal by adding multiples of row i to 

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
A(j, i) = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) – A(j, i)* A(i, k)
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GE - Runtime

 Divisions  

 Multiplications / subtractions

 Total

1+ 2 + 3 + … (n-1) = n2/2 (approx.)

12 + 22 + 32 + 42 +52 + …. (n-1)2 = n3/3 – n2/2

2n3/3



Parallel GE

 1st step – 1-D block partitioning along 
blocks of n columns by p processors
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1D block partitioning - Steps

1. Divisions

2. Broadcast

3. Multiplications and Subtractions

Runtime:

n2/2

xlog(p) + ylog(p-1) + zlog(p-3) + … log1 < 
n2logp

(n-1)n/p + (n-2)n/p + …. 1x1 = n3/p (approx.)

< n2/2 +n2logp + n3/p 



2-D block

 To speedup the divisions
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2D block partitioning - Steps

1. Broadcast of (k,k)

2. Divisions

3. Broadcast of multipliers

logQ

n2/Q (approx.)

xlog(P) + ylog(P-1) + zlog(P-2) + …. = n2/Q logP

4. Multiplications and subtractions

n3/PQ (approx.)



Problem with block partitioning for 
GE

 Once a block is finished, the 
corresponding processor remains idle 
for the rest of the execution

 Solution? -



Onto cyclic

 The block partitioning algorithms waste 
processor cycles. No load balancing 
throughout the algorithm.

 Onto cyclic

0 1 2 3 0 2 3 0 2 31 1 0

cyclic 1-D block-cyclic 2-D block-cyclic

Load balance
Load balance, block operations, 
but column factorization 
bottleneck

Has everything



Block cyclic

 Having blocks in a processor can lead 
to block-based operations (block 
matrix multiply etc.)

 Block based operations lead to high 
performance



GE: Miscellaneous
GE with Partial Pivoting

 1D block-column  partitioning: which is 
better? Column or row pivoting

 2D block partitioning: Can restrict the pivot 
search to limited number of columns

•Column pivoting does not involve any extra steps since pivot search 
and exchange are done locally on each processor. O(n-i-1)

•The exchange information is passed to the other processes by 
piggybacking with the multiplier information

• Row pivoting

• Involves distributed search and exchange – O(n/P)+O(logP)



Triangular Solve – Unit Upper 
triangular matrix

 Sequential Complexity  -

 Complexity of parallel algorithm with 
2D block partitioning (P0.5*P0.5)

O(n2)

O(n2)/P0.5

 Thus (parallel GE / parallel TS) < (sequential GE / sequential TS)

 Overall (GE+TS) – O(n3/P)



 Dense LU on GPUs



LU for Hybrid Multicore + GPU 
Systems
(Tomov et al., Parallel Computing, 2010)

 Assume the CPU host has 8 cores

 Assume NxN matrix; Divided into blocks 
of size NB;

 Split such that the first N-7NB columns 
are on GPU memory

 Last 7NB on the host



Load Splitting for Hybrid LU



Steps

 Current panel is downloaded to CPU; the dark blue 
part in the figure

 Panel factored on CPU and result sent to GPU to 
update trailing sub-matrix; the red part;

 GPU updates the first NB columns of the trailing 
submatrix

 Updated panel sent to CPU; Asynchronously 
factored on CPU while the GPU updates the rest of 
the trailing submatrix

 The rest of the 7 host cores update the last 7 NB 
host columns



Parallel Dense Matrix 
Computations – Tile-Based 
Cholesky and QR

- For heterogeneous architectures

- Communication-avoiding algorithms



Heterogeneous Tile Algorithms for 
Heterogeneous Architectures
General Strategy

 Hetrogeneous tile algorithms

 Heterogeneous multi-level block-
cyclic data distribution

 Source:

 Paper: “F. Song, S. Tomov, and J. 
Dongarra. Enabling and Scaling 
Matrix Computations on 
Heterogeneous Multi-core and Multi-
GPU Systems. In In the Proceedings 



General Strategy

 Small tiles on the host, large tiles on 
the GPUs

 A two-level 1-D block-cyclic method

 First map a matrix to only CPUs using 
a 1-D column block cyclic distribution, 
and then cut out slices for GPUs



Hybrid Tile Data Layout

 Divide a matrix into a set of small and 
large tiles

 At the top level, divide the matrix into                                                                 
large square tiles of size BxB

 Subdivide each top level tile of size 
BxB                                                        
into a number of small rectangular                                                         
tiles of size Bxb, and a remaining tile

 Figure (a) – divide the 12x12 matrix 
into four 6x6 tiles, then divide each 
6x6 tiles into two 6x1 and one 6x4 



Heterogeneous Tile Cholesky 
Factorization

 Each aij represents a small tile of size 
Bxb, and each Aij represents a large 
tile of size Bx(B-b(s-1))



Heterogeneous Tile Cholesky 
Factorization - Illustration

 Matrix divided into 3x3 tiles, i.e., p=3

 Each tile divided into one small and 
one large tile, i.e., s=2

 Factorization goes through six (pxs) 
iterations



Illustration Continued

 Solve L11                           

Apply L11 to update its right A12



Illustration Continued

 Computes TRSMs for the two tiles 
below L11



Illustration Continued

 Apply GSMMs to update all tiles           
Second iteration                        to 
the right of the first tile column    
Start from the second tile column



Heterogeneous 1D Column 
Block Cyclic Distribution



QR Factorization, TSQR, CAQR

 Sources, Credits, some slides taken 
from:

 Slides on “Communication Avoiding 
QR and LU”, CS 294 lecture slides, 
Laura Grigori, ALPINES INRIA 
Rocquencourt - LJLL, UPMC 

 https://who.rocq.inria.fr/Laura.Grigori
/TeachingDocs/CS-
294_Spr2016/Slides_CS-
294_Spr2016/CS294_Spr16_CALUQR
.pdf

https://who.rocq.inria.fr/Laura.Grigori/TeachingDocs/CS-294_Spr2016/Slides_CS-294_Spr2016/CS294_Spr16_CALUQR.pdf










QR Factorization for Tall and 
Skinny Matrices (TSQR)

 Parallelization using Binary Tree



Parallel TSQR Factorization on a 
Binary Tree of Four Processors





Steps – Stage 0



Steps

 Stagae 1 –

 Stage 2 –

 Complete Factorization



QR on General Trees using 16 
blocks and 4 processors







Parallel CAQR (Communication-
avoiding QR)

 Uses parallel TSQR
 mxn matrix distributed in 2D block-cyclic 

distribution with block size b
 At each step of factorization, TSQR is used to 

factor a panel of columns
 Followed by trailing matrix update – applying the 

Householder vectors to the rest of the matrix
 The update corresponding to the QR factorization 

at the leaves of the TSQR tree is performed 
locally on every processor

 The updates corresponding to the upper levels of 
the TSQR tree are performed between groups of 
neighboring trailing matrix processors



Parallel CAQR

 Only one of the trailing matrix 
processors in each neighbour group 
continues to be involved in successive 
trailing matrix updates

 Allows overlap of computation and 
communication – uninvolved 
processors can finish their 
computations in parallel with 
successive reduction stages




