Parallel Linear Algebra
(Linear System of Equations)

Sathish Vadhiyar

Gaussian Elimination - Review

Version 1
for each column i

zero it out below the diagonal by adding multiples of row i to
later rows

fori= 1 to n-1
for each row j below row i
forj =i+1ton
add a multiple of row i to row j
fork =iton
li

!

A 4

<
<

~

o O O O O O

—
ST
o O O O O
X X X <

Gaussian Elimination - Review

Version 2 — Remove A(j, i)/A(i, i) from inner loop
for each column i

zero it out below the diagonal by adding multiples of row i to
later rows

fori= 1 ton-1
for each row j below row i
forj =i+1ton
m = A(j, 1) / A(i, 1)
fork =iton

A
A 4

~

o O O O O O

—
ST
o O O O O
X X X <

Gaussian Elimination - Review

Version 3 - Don’t compute what we already know
for each column i

zero it out below the diagonal by adding multiples of row i to
later rows

fori= 1 ton-1
for each row j below row i
forj =i+1ton
m = A(j, 1) / A(i, 1)
fork =i+1ton

A
A 4

o O O O O O

o O O O o

Gaussian Elimination - Review

Version 4 - Store multipliers m below diagonals
for each column i

zero it out below the diagonal by adding multiples of row i to
later rows

fori= 1 ton-1
for each row j below row i
forj =i+1ton
AQ, 1) = A, 1) / A, 1)
fork =i+1ton
li

!

A
A 4

~

o O O O O O

—
ST
o O O O O
X X X <

GE - Runtime

Divisions
1+ 2+ 3 + ... (n-1) = n?/2 (approx.)

Multiplications / subtractions

12 + 22 + 32+ 42 +52 + ., (n-1)2 = n3/3 - n2/2

[otal

2n3/3

Parallel GE

1st step — 1-D block partitioning along
blocks of n columns by p processors

!

o O O O O O

o O O O O
X

1D block partitioning - Steps

1. Divisions
n2/2

2. Broadcast

xlog(p) + ylog(p-1) + zlog(p-3) + ... logl <
nZlogp

3. Multiplications and Subtractions
(n-1)n/p + (n-2)n/p + 1x1 = n3/p (approx.)

Runtime:

< n?/2 +n%logp + n3/p

2-D block

[0 speedup the divisions

2D block partitioning - Steps

1. Broadcast of (k, k)

logQ

2. Divisions
n2/Q (approx.)

3. Broadcast of multipliers
xlog(P) + ylog(P-1) + zlog(P-2) + = n2/Q logP

4. Multiplications and subtractions

n3/PQ (approx.)

Problem with block partitioning for
GE

Once a block is finished, the
corresponding processor remains idle
for the rest of the execution

Solution? -

Onto cyclic

The block partitioning algorithms waste
processor cycles. No load balancing
throughout the algorithm.

Onto cyclic

AEREREREIERLCRE

2323|2323

p(i1[o[1[0[1[0]1

olil23loli1213l0l1 121310 o|1|2|3|0|1(2 |3 2323|213 |23
IERLIEREIERLIE

232 (3|23 |23

AEREIEREIERLCRE

2323|2323

cyclic 1-D block-cyclic 2-D block-cyclic

Load balance, block operations, Has everything

Load balance but column factorization

bottleneck

Block cyclic

Having blocks in a processor can lead
to block-based operations (block
matrix multiply etc.)

Block based operations lead to high

performance

GE: Miscellaneous
GE with Partial Pivoting

1D block-column partitioning: which is

better? Column or row JZ)IVO’CII’]? | |
eColumn pivoting does not involve any extra steps since pivot search

and exchange are done locally on each processor. O(n-i-1)

eThe exchange information is passed to the other processes by
piggybacking with the multiplier information

e Row pivoting

e Involves distributed search and exchange - O(n/P)+0O(logP)

2D block partitioning: Can restrict the pivot
search to limited number of columns

Triangular Solve - Unit Upper
triangular matrix

Sequential Complexity - o)

Complexity of parallel algorithm with
2D block partitioning (P9->*P0:-2) o(nz)/pos

[0 Thus (parallel GE / parallel TS) < (sequential GE / sequential TS)
0 Overall (GE+TS) - O(n3/P)

Dense LU on GPUs

LU for Hybrid Multicore + GPU

Systems
(Tomov et al., Parallel Computing, 2010)

Assume the CPU host has 8 cores

Assume NxN matrix; Divided into blocks
of size NB;

Split such that the first N-7NB columns
are on GPU memory

Last 7NB on the host

Load Splitting for Hybrid LU

7NB

1Core + 1 (,Pl. 7 Cores
Panel Update trailing Update trailing
lactoriration sith=m: |1 rix sith-matrix

Steps

B

O

Current panel is downloaded to CPU; the dark blue
part in the figure

Panel factored on CPU and result sent to GPU to
update trailing sub-matrix; the red part;

GPU updates the first NB columns of the trailing
submatrix

Updated panel sent to CPU; Asynchronously
factored on CPU while the GPU updates the rest of
the trailing submatrix

The rest of the 7 host cores update the last 7 NB
host columns

Parallel Dense Matrix
Computations - Tile-Based
Cholesky and QR

- For heterogeneous architectures
- Communication-avoiding algorithms

Heterogeneous Tile Algorithms for
Heterogeneous Architectures
General Strategy

Hetrogeneous tile algorithms

Heterogeneous multi-level block-
cyclic data distribution

Source:

Paper: “F. Song, S. Tomov, and J.
Dongarra. Enabling and Scaling

— Matrix Computationson

Heterogeneous Multi-core and Multi-

General Strategy

Small tiles on the host, large tiles on
the GPUs

A two-level 1-D block-cyclic method

First map a matrix to only CPUs using
a 1-D column block cyclic distribution,
and then cut out slices for GPUs

Hybrid Tile Data Layout

Divide a matrix into a set of small and
large tiles

A[XX XX |X[%] X X X &

wlel xxoxx [x|x xxxx

: - ile) s xxx Jele| xxax

e top level, divid [{|::
J il xox xx [wfx| xxxx

wlx] wx xx fx|x| xxxx

. [xEaE [aran

large square tiles of s [i[::i][
K] X XXX [X|X] XX X X

EEI XXX KX XXX X

¥ ¥ X ¥ N ¥

Subdivide each tople &« &
BxB

into @ number of small rectangular
tiles of size Bxb, and a remaining tile

Figure (a) — divide the 12x12 matrix

into four 6x6 tiles, then divide each

Heterogeneous Tile Cholesky
Factorization

. -

Q11 @12... A Byia+1) D1{a+a)--- -;11:_231
1 d292 ... —'4'23 A2(a41) IB{a+2) - .- -AE:.EE'I s \ where

s ﬂpﬂ [_'4.?:.,3:_;- ﬂpla_J] ap'a-_?‘] - _'qp[-}lg‘] aaa

Each a;; represents a small tile of size
Bxb, and each A; represents a large
tile of size Bx(B-b(s-1))

Heterogeneous Tile Cholesky
Factorization - Illustration

1 2 3 4 5 &

(a)

Matrix divided into 3x3 tiles, i.e., p=3

Each tile divided into one small and
one large tile, i.e., s=2

Factorization goes through six (pxs)

iterations

Illustration Continued

(k)

EEI' CAah/in |

OTF2'(Ak, Ler): Given a matrix Asp of m x n and
m > n, we let 4, = {A”") such that A;xy is of n x

n and Aue 18 of (m — n) >-< n. We also let L, =
{L”"} POTF2' computes { tv) by solving Ly =

Cholesky(A1) and Lygs = fflnk:Lr,;_l

te

(<)

GSI\IHI{LEI_.. L_*.i.fc:« .q-j__-li} CDIHPUt—E!S _-q.-j_j = _f-JLj_J' — L,;j;L}";L..
Lo 1 Iyl IC M\ 1L L

Illustration Continued

1 2 2 4 5 &

(d)

TRSM(L:k, Auk, Lix) computes Ly = Ay L,". the two ti Ies
below L11

Illustration Continued

1 2 3 4

5 B

v

Apply GSMMs to update all tiles

Second iteration to
the right of the first tile column

~ Star

t from the second tile column

Heterogeneous 1D Column
Block Cyclic Distribution

L.
5
]:'u

s12..s 12,5 1261]3(3:*1@317@1126212(33

[

|

e | K.

a) (b)

Figure 7: Heterogeneous 1-D column block cyclic
data distribution. (a) The matrix A divided by a two-level
partitioning method. (p,s) determines a matrix partition. (b)
Allocation of a matrix of 6 x 12 rectangular tiles (i.e., p=6, s=2)
to a host and three GPUs: h, Gy, G2, and Gs.

QR Factorization, TSQR, CAQR

Sources, Credits, some slides taken
from:

Slides on "Communication Avoiding
QR and LU, CS 294 lecture slides,
_aura Grigori, ALPINES INRIA
Rocquencourt - LIJLL, UPMC

nttps://who.rocq.inria.fr/Laura.Grigori
/TeachingDocs/CS-
294 Spr2016/Slides CS-

294 Spr2016/CS294 Spri6 CALUOR
=Yals

https://who.rocq.inria.fr/Laura.Grigori/TeachingDocs/CS-294_Spr2016/Slides_CS-294_Spr2016/CS294_Spr16_CALUQR.pdf

General scheme for
QR factorization by Householder transformations

Apply Householder transformations to annihilate subdiagonal entries

X X x x X X X x X X X x
\ X X X x . 0 x x x H[;l X X X
Ty ox ox x| Y0 x ox x| P ;";'1_ 00 x x|
Y XXX 0 x x x Y oX
(x x x X
1
H,H | O aa H,H.H.R = OR
- 1++2 ~ D 0 X X - 144248453 _(;
H3
10 0 0 x

For A of size mxn, the factorization can be written as:

HH . HHA=R—>A=(HH . HHYR
Q=HH,. H,

Compact representation for Q

+ Orthogonal factor Q can be represented implicitly as
Q =HH,..H,=(I-t,hh!)...(I-1,h,h))=1-YTY", where
Y=(h h, ... h,)

yT

;
N N

|
-

Example for b=2:

I'F.

Y =(h

Algebra of block QR factorization

Matrix A of size nxn is partitioned as

1411 A 5]

A, A,

, where A, 1s bx b

Block QR algebra

The first step of the block QR factorization algorithm computes:

Rll Rl_"
QITA = [Al]

The algorithm continues recursively on the trailing matrix A’

Block QR factorization

A — .‘411 ‘412] _ Q .Rll Rli
Ay Ap) T A,

!

Block QR algebra:
1. Compute panel factorization:

Ay _ Ry
A —Ql : Ql = H\H,..H,
o - | Y, T, Y]

2. Compute the compact representation: .‘ ‘-

T
Q1=‘F_Y1"'1Y1

3. Update the trailing matrix:

‘ALY (AL
._‘I 2_7',-' ’ "'q,-'

I

Ay I\ .Hl_? -\
RV l

Y’ =
4. The algorithm continues re-::urﬂsi\.ne;h,r on the trailing matrix.

172,

f

QR Factorization for Tall and
Skinny Matrices (TSQR)

Parallelization using Binary Tree

Parallel TSQR Factorization on a
Binary Tree of Four Processors

A; — Qo0 Roo
— Qo1 Rox
A; —>Qu0 Rio
—>Q02Ro2
A, —>Qy Ry
—Qy; Ry
A; —>Q3 Ry
Figure 1: Execution of the parallel TSQR factorization on a binary tree of four
processors. The gray boxes indicate where local QR factorizations take place.

The) and R factors each have two subscripts: the first is the sequence number
within that stage, and the second is the stage number.

Parallel TSQR

&
L
A:D
|
A&
&
A
A::D
—

I < | < = -
2
%
4::!
~

jf
€]

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 83, Da Cunha,

Becker, Patterson, 02

Steps - Stage O

Ap

_ | A

A= A,
Ag
Ay Qoo oo
Ay | _ | QB
A ()20 Hop
As ()30 lan

Qoo Roo Qoo Rog
4— QR | (1o N EED
T | QaoRa | (a0 Rag
(220 a0 Qa0 Rao

Steps

Stagae 1 -

() (Crn)) foummy
) \(w))

QR on General Trees using 16
blocks and 4 processors

Ay —*0y Rog
—=Qyy Ry
Ay —=Qu | Ryn
—*Qu| R
Ay —= 00| Ry
—=Qy;| Ryy
Ay —=0y Ry —= 0| Ros

Ay —= Ay |—0, Ry
—+=Qus| Rz

—=Qlia | Rae
Ay —= Ay —=0y| Ry
Ag A |—= 0| Ryy
—=Qus| Rz Qus Res
py —————————————— Ay — Qx| Ry
Ag Ay —> Q| R
—0h Ryg — 0oy | Rog
Ay Ay —> Q| Ray
Ay Ay —=0ha) Ras
—=0ys Rys —Qus| Rz
Ag Ay —= | Rag
A A —=Qy By
*Chg| Rug —Qn Ron
Ap Ay —= Qs Rys
A Ay —=04; Rag
Q| Rz

A Ap —=0| Ras

Flexibility of TSQR and CAQR algorithms

W, : gﬂo j;:; Roy R'w
Parallel: w=| W, 10 Ry,
W2 —» Rzo e RII J___.--"f-'
W, 17 Ry —
w, | - R, —
’ ' ? —— _G_ _ g Rﬂi ————
Sequential: w=| W, Y T3 R,
Wy | — R < ¥
Wo : Roo —5 Roy —_
Dual Core: w=| W, Roy —> 3 R,
W | — Ri1 -ﬁ_ﬂ:ifqaa
E “ Ru

Reduction tree will depend on the underlying architecture,

could be chosen dynamically

TSQR: QR factorization of a tall skinny matrix
using Householder transformations

« QR decomposition of m x b matrix W, m >> b
« P processors, block row layout

« Classic Parallel Algorithm
« Compute Householder vector for each column
« Number of messages « b log P

« Communication Avoiding Algorithm
» Reduction operation, with QR as operator
« Number of messages « log P

Wo | = | Roo| >R,
| W ™ | R — N1 \\N“*
w 1 10 Rgz
WE — Hgg ::;_‘: RJ_‘{ f/_/-"
W, R3o

J. Demmel, LG, M. Hoemmen, J. Langou, 08 Page 25

Parallel CAQR (Communication-
avoiding QR)

A fAAAH e e fRAARE gt

]

Uses parallel TSQR

mxn matrix distributed in 2D block-cyclic
distribution with block size b

At each step of factorization, TSQR is used to
factor a panel of columns

Followed by trailing matrix update — applying the
Householder vectors to the rest of the matrix

The update corresponding to the QR factorization
at the leaves of the TSQR tree is performed
locally on every processor

The updates corresponding to the upper levels of
the TSQR tree are performed between groups of
neighboring trailing matrix processors

Parallel CAQR

Only one of the trailing matrix
processors in each neighbour group
continues to be involved in successive
trailing matrix updates

Allows overlap of computation and
communication — uninvolved
processors can finish their
computations in parallel with
successive reduction stages

Parallel:

W=

Sss=

Algebra of TSQR

—» R T

Rio \\\‘
— R T
— Rzﬂ _—r Rll /

- 20
CAQR

N mm o
Oy - N -
b —

Stepl Stepl

