Parallel Linear Algebra (Linear System of Equations)

Sathish Vadhiyar

Version 1

for each column i
zero it out below the diagonal by adding multiples of row i to
later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
add a multiple of row i to row j
for k = i to n

A(j, k) = A(j, k) - A(j, i)/A(i, i) * A(i, k)

Version 2 – Remove A(j, i)/A(i, i) from inner loop

for each column i
 zero it out below the diagonal by adding multiples of row i to
 later rows
for i= 1 to n-1
 for each row j below row i
 for j = i+1 to n
 m = A(j, i) / A(i, i)
 for k = i to n
 A(j, k) = A(j, k) - m* A(i, k)

Version 3 – Don't compute what we already know

for each column i zero it out below the diagonal by adding multiples of row i to later rows for i = 1 to n-1for each row j below row i for j = i+1 to n m = A(j, i) / A(i, i)for k = i+1 to n $A(j, k) = A(j, k) - m^* A(i, k)$ 0

Version 4 – Store multipliers m below diagonals

for each column i zero it out below the diagonal by adding multiples of row i to later rows for i = 1 to n-1for each row j below row i for j = i+1 to n A(j, i) = A(j, i) / A(i, i)for k = i+1 to n A(j, k) = A(j, k) - A(j, i) * A(i, k)0 k 0 0

GE - Runtime

Divisions

 $1+2+3+...(n-1) = n^2/2$ (approx.)

Multiplications / subtractions

 $1^2 + 2^2 + 3^2 + 4^2 + 5^2 + \dots (n-1)^2 = n^{3/3} - n^{2/2}$

2n³/3

Parallel GE

1st step – 1-D block partitioning along blocks of n columns by p processors

1D block partitioning - Steps

1. Divisions

n²/2

2. Broadcast

xlog(p) + ylog(p-1) + zlog(p-3) + ... log1 < n²logp **3. Multiplications and Subtractions**

 $(n-1)n/p + (n-2)n/p + 1x1 = n^3/p (approx.)$

Runtime:

 $< n^{2}/2 + n^{2}logp + n^{3}/p$

2-D block

□ To speedup the divisions

Ρ

2D block partitioning - Steps

- 1. Broadcast of (k,k)
- 2. Divisions

n²/Q (approx.)

3. Broadcast of multipliers

 $x\log(P) + y\log(P-1) + z\log(P-2) + ... = n^2/Q \log P$

4. Multiplications and subtractions

n³/PQ (approx.)

Problem with block partitioning for GE

Once a block is finished, the corresponding processor remains idle for the rest of the execution

□ Solution? -

Onto cyclic

The block partitioning algorithms waste processor cycles. No load balancing throughout the algorithm.

Onto cyclic

Block cyclic

- Having blocks in a processor can lead to block-based operations (block matrix multiply etc.)
- Block based operations lead to high performance

GE: Miscellaneous GE with Partial Pivoting

- ID block-column partitioning: which is better? Column or row pivoting
 Column pivoting does not involve any extra steps since pivot search and exchange are done locally on each processor. O(n-i-1)
- •The exchange information is passed to the other processes by piggybacking with the multiplier information
- Row pivoting
- Involves distributed search and exchange O(n/P)+O(logP)
 - 2D block partitioning: Can restrict the pivot search to limited number of columns

Triangular Solve – Unit Upper triangular matrix

□ Sequential Complexity - O(n²)

□ Complexity of parallel algorithm with 2D block partitioning (P^{0.5}*P^{0.5}) O(n²)/P^{0.5}

□ Thus (parallel GE / parallel TS) < (sequential GE / sequential TS) □ Overall (GE+TS) – $O(n^3/P)$

Dense LU on GPUs

LU for Hybrid Multicore + GPU Systems

(Tomov et al., Parallel Computing, 2010)

- Assume the CPU host has 8 cores
- Assume NxN matrix; Divided into blocks of size NB;
- Split such that the first N-7NB columns are on GPU memory
- Last 7NB on the host

Load Splitting for Hybrid LU

Steps

- Current panel is downloaded to CPU; the dark blue part in the figure
- Panel factored on CPU and result sent to GPU to update trailing sub-matrix; the red part;
- GPU updates the first NB columns of the trailing submatrix
- Updated panel sent to CPU; Asynchronously factored on CPU while the GPU updates the rest of the trailing submatrix
- The rest of the 7 host cores update the last 7 NB host columns

Parallel Dense Matrix Computations – Tile-Based Cholesky and QR

- For heterogeneous architectures
- Communication-avoiding algorithms

Heterogeneous Tile Algorithms for Heterogeneous Architectures General Strategy

Hetrogeneous tile algorithms

Heterogeneous multi-level blockcyclic data distribution

□ Source:

Paper: "F. Song, S. Tomov, and J. Dongarra. Enabling and Scaling Matrix Computations on Heterogeneous Multi-core and Multi-

General Strategy

- Small tiles on the host, large tiles on the GPUs
- □ A two-level 1-D block-cyclic method
- First map a matrix to only CPUs using a 1-D column block cyclic distribution, and then cut out slices for GPUs

Hybrid Tile Data Layout

- Divide a matrix into a set of small and large tiles
- □ At the top level, divid large square tiles of s

XX XX	XXXX XXXX	XX XX	XXXX XXXX
XX	XXXX	XX	XXXX
x x	x x x x x	x x	x x x x
XX XX	X X X X X X X X	XX XX	X X X X X X X X
X X X X	X X X X X X X X X X X X X X X X X X X	X X X X	X X X X X X X X
(a)			

- Subdivide each top le (a)
 BxB
 - into a number of small rectangular tiles of size Bxb, and a remaining tile
- □ Figure (a) divide the 12x12 matrix into four 6x6 tiles, then divide each

Heterogeneous Tile Cholesky Factorization

Each a_{ij} represents a small tile of size Bxb, and each A_{ij} represents a large tile of size Bx(B-b(s-1))

Heterogeneous Tile Cholesky Factorization - Illustration

- □ Matrix divided into 3x3 tiles, i.e., p=3
- Each tile divided into one small and one large tile, i.e., s=2
- Factorization goes through six (pxs) iterations

Illustration Continued

POTF2'(A_{tk} , L_{tk}): Given a matrix A_{tk} of $m \times n$ and $m \ge n$, we let $A_{tk} = \binom{A_{tk1}}{A_{tk2}}$ such that A_{tk1} is of $n \times n$ n, and A_{tk2} is of $(m - n) \times n$. We also let $L_{tk} = \binom{L_{tk1}}{L_{tk2}}$. We also let $L_{tk} = \binom{L_{tk1}}{L_{tk2}}$. POTF2' computes $\binom{L_{tk1}}{L_{tk2}}$ by solving $L_{tk1} =$ Cholesky(A_{tk1}) and $L_{tk2} = A_{tk2}L_{tk1}^{-T}$.

Illustration Continued

TRSM(L_{tk} , A_{ik} , L_{ik}) computes $L_{ik} = A_{ik}L_{tk}^{-T}$. the two tiles below L11

Illustration Continued

Apply GSMMs to update all tiles Second iteration to the right of the first tile column Start from the second tile column

Heterogeneous 1D Column Block Cyclic Distribution

Figure 7: Heterogeneous 1-D column block cyclic data distribution. (a) The matrix A divided by a two-level partitioning method. (p, s) determines a matrix partition. (b) Allocation of a matrix of 6×12 rectangular tiles (i.e., p=6, s=2) to a host and three GPUs: h, G_1 , G_2 , and G_3 .

QR Factorization, TSQR, CAQR

- Sources, Credits, some slides taken from:
- Slides on "Communication Avoiding QR and LU", CS 294 lecture slides, Laura Grigori, ALPINES INRIA Rocquencourt - LJLL, UPMC
- https://who.rocq.inria.fr/Laura.Grigori /TeachingDocs/CS-294 Spr2016/Slides CS-294 Spr2016/CS294 Spr16 CALUQR ndf

General scheme for QR factorization by Householder transformations

Apply Householder transformations to annihilate subdiagonal entries

For A of size mxn, the factorization can be written as:

$$\begin{split} H_n H_{n-1} & \dots H_2 H_1 A = R \twoheadrightarrow A = \left(H_n H_{n-1} \dots H_2 H_1 \right)^T R \\ Q &= H_1 H_2 \dots H_n \end{split}$$

Compact representation for Q

Orthogonal factor Q can be represented implicitly as

 $Q = H_1 H_2 \dots H_b = (I - \tau_1 h_1 h_1^T) \dots (I - \tau_b h_b h_b^T) = I - YTY^T, \text{ where}$ $Y = \begin{pmatrix} h_1 & h_2 & \dots & h_b \end{pmatrix}$

• Example for *b*=2:

$$Y = (h_1 | h_2), \quad \mathbf{T} = \begin{pmatrix} \boldsymbol{\tau}_1 & -\boldsymbol{\tau}_1 h_1^T h_2 \boldsymbol{\tau}_2 \\ & \boldsymbol{\tau}_2 \end{pmatrix}$$

Algebra of block QR factorization

Matrix A of size nxn is partitioned as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \text{ where } A_{11} \text{ is } b \times b$$

Block QR algebra

The first step of the block QR factorization algorithm computes:

$$Q_1^T A = \begin{bmatrix} R_{11} & R_{12} \\ & A_{22}^1 \end{bmatrix}$$

The algorithm continues recursively on the trailing matrix A221

Block QR factorization

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = Q_1 \begin{pmatrix} R_{11} & R_{12} \\ & A_{22}^{-1} \end{pmatrix}$$

Block QR algebra:

1. Compute panel factorization:

$$\begin{pmatrix} \mathbf{A}_{11} \\ \mathbf{A}_{12} \end{pmatrix} = \mathbf{Q}_{1} \begin{pmatrix} R_{11} \\ \end{pmatrix}, \quad \mathbf{Q}_{1} = H_{1}H_{2}...H_{b}$$

2. Compute the compact representation:

$$\mathbf{Q}_1 = I - Y_1 T_1 Y_1^T$$

3. Update the trailing matrix:

$$\left(I - Y_1 T_1^T Y_1^T\right) \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} = \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} - Y_1 \begin{pmatrix} T_1^T \begin{pmatrix} Y_1^T \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} R_{12} \\ A_{22}^1 \end{pmatrix}$$

4. The algorithm continues recursively on the trailing matrix.

QR Factorization for Tall and Skinny Matrices (TSQR)

Parallelization using Binary Tree

Parallel TSQR Factorization on a Binary Tree of Four Processors

Figure 1: Execution of the parallel TSQR factorization on a binary tree of four processors. The gray boxes indicate where local QR factorizations take place. The Q and R factors each have two subscripts: the first is the sequence number within that stage, and the second is the stage number.

Steps – Stage 0

$$\begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{pmatrix} = \begin{pmatrix} Q_{00} R_{00} \\ Q_{10} R_{10} \\ Q_{20} R_{20} \\ Q_{30} R_{30} \end{pmatrix}$$

$$A = \begin{pmatrix} Q_{00}R_{00} \\ Q_{10}R_{10} \\ Q_{20}R_{20} \\ Q_{30}R_{30} \end{pmatrix} = \begin{pmatrix} Q_{00} & | & | \\ \hline & Q_{10} & | \\ \hline & Q_{20} & | \\ \hline & & Q_{20} & | \\ \hline & & Q_{30} \end{pmatrix} \cdot \begin{pmatrix} R_{00} \\ \hline & R_{10} \\ \hline & R_{20} \\ \hline & R_{30} \end{pmatrix}$$

Steps

$$\Box \operatorname{Stag}_{\mathcal{L}_{11}}^{\binom{R_{01}}{R_{11}}} = Q_{02}R_{02}.$$

$$\square COMP = \begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{pmatrix} = \begin{pmatrix} Q_{00} & | & | \\ \hline Q_{10} & | \\ \hline Q_{20} & | \\ \hline Q_{30} \end{pmatrix} \cdot \begin{pmatrix} Q_{01} & | \\ Q_{01} & | \\ \hline Q_{11} \end{pmatrix} \cdot Q_{02} \cdot R_{02},$$

QR on General Trees using 16 blocks and 4 processors

Flexibility of TSQR and CAQR algorithms

Dual Core:
$$W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \xrightarrow{\rightarrow} \begin{array}{c} R_{00} \\ R_{01} \\ R_{01} \\ R_{11} \\ R_{11} \\ R_{11} \\ R_{11} \\ R_{11} \\ R_{03} \\ R_{11} \\ R_{03} \\ R_{11} \\ R_{03} \\ R_{11} \\ R_{03} \\ R_{11} \\ R_{1$$

Reduction tree will depend on the underlying architecture, could be chosen dynamically

TSQR: QR factorization of a tall skinny matrix using Householder transformations

- QR decomposition of m x b matrix W, m >> b
 - P processors, block row layout
- Classic Parallel Algorithm
 - Compute Householder vector for each column
 - Number of messages ∝ b log P
- Communication Avoiding Algorithm
 - Reduction operation, with QR as operator
 - Number of messages ∝ log P

$$W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \xrightarrow{\rightarrow} \begin{bmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{bmatrix} \xrightarrow{\rightarrow} R_{01}$$

J. Demmel, LG, M. Hoemmen, J. Langou, 08

Page 25

Parallel CAQR (Communicationavoiding QR)

Uses parallel TSQR

- mxn matrix distributed in 2D block-cyclic distribution with block size b
- At each step of factorization, TSQR is used to factor a panel of columns
- Followed by trailing matrix update applying the Householder vectors to the rest of the matrix
- The update corresponding to the QR factorization at the leaves of the TSQR tree is performed locally on every processor
- The updates corresponding to the upper levels of the TSQR tree are performed between groups of neighboring trailing matrix processors

Parallel CAQR

Only one of the trailing matrix processors in each neighbour group continues to be involved in successive trailing matrix updates

Allows overlap of computation and communication – uninvolved processors can finish their computations in parallel with successive reduction stages

