
Parallel Linear Algebra
(Linear System of Equations)

Sathish Vadhiyar

Gaussian Elimination - Review

Version 1
for each column i
zero it out below the diagonal by adding multiples of row i to

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
add a multiple of row i to row j
for k = i to n
A(j, k) = A(j, k) – A(j, i)/A(i, i) * A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

Gaussian Elimination - Review

Version 2 – Remove A(j, i)/A(i, i) from inner loop
for each column i
zero it out below the diagonal by adding multiples of row i to

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i to n
A(j, k) = A(j, k) – m* A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

Gaussian Elimination - Review

Version 3 – Don’t compute what we already know
for each column i
zero it out below the diagonal by adding multiples of row i to

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) – m* A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

Gaussian Elimination - Review

Version 4 – Store multipliers m below diagonals
for each column i
zero it out below the diagonal by adding multiples of row i to

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
A(j, i) = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) – A(j, i)* A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

GE - Runtime

 Divisions

 Multiplications / subtractions

 Total

1+ 2 + 3 + … (n-1) = n2/2 (approx.)

12 + 22 + 32 + 42 +52 + …. (n-1)2 = n3/3 – n2/2

2n3/3

Parallel GE

 1st step – 1-D block partitioning along
blocks of n columns by p processors

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

1D block partitioning - Steps

1. Divisions

2. Broadcast

3. Multiplications and Subtractions

Runtime:

n2/2

xlog(p) + ylog(p-1) + zlog(p-3) + … log1 <
n2logp

(n-1)n/p + (n-2)n/p + …. 1x1 = n3/p (approx.)

< n2/2 +n2logp + n3/p

2-D block

 To speedup the divisions

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

P

Q

2D block partitioning - Steps

1. Broadcast of (k,k)

2. Divisions

3. Broadcast of multipliers

logQ

n2/Q (approx.)

xlog(P) + ylog(P-1) + zlog(P-2) + …. = n2/Q logP

4. Multiplications and subtractions

n3/PQ (approx.)

Problem with block partitioning for
GE

 Once a block is finished, the
corresponding processor remains idle
for the rest of the execution

 Solution? -

Onto cyclic

 The block partitioning algorithms waste
processor cycles. No load balancing
throughout the algorithm.

 Onto cyclic

0 1 2 3 0 2 3 0 2 31 1 0

cyclic 1-D block-cyclic 2-D block-cyclic

Load balance
Load balance, block operations,
but column factorization
bottleneck

Has everything

Block cyclic

 Having blocks in a processor can lead
to block-based operations (block
matrix multiply etc.)

 Block based operations lead to high
performance

GE: Miscellaneous
GE with Partial Pivoting

 1D block-column partitioning: which is
better? Column or row pivoting

 2D block partitioning: Can restrict the pivot
search to limited number of columns

•Column pivoting does not involve any extra steps since pivot search
and exchange are done locally on each processor. O(n-i-1)

•The exchange information is passed to the other processes by
piggybacking with the multiplier information

• Row pivoting

• Involves distributed search and exchange – O(n/P)+O(logP)

Triangular Solve – Unit Upper
triangular matrix

 Sequential Complexity -

 Complexity of parallel algorithm with
2D block partitioning (P0.5*P0.5)

O(n2)

O(n2)/P0.5

 Thus (parallel GE / parallel TS) < (sequential GE / sequential TS)

 Overall (GE+TS) – O(n3/P)

 Dense LU on GPUs

LU for Hybrid Multicore + GPU
Systems
(Tomov et al., Parallel Computing, 2010)

 Assume the CPU host has 8 cores

 Assume NxN matrix; Divided into blocks
of size NB;

 Split such that the first N-7NB columns
are on GPU memory

 Last 7NB on the host

Load Splitting for Hybrid LU

Steps

 Current panel is downloaded to CPU; the dark blue
part in the figure

 Panel factored on CPU and result sent to GPU to
update trailing sub-matrix; the red part;

 GPU updates the first NB columns of the trailing
submatrix

 Updated panel sent to CPU; Asynchronously
factored on CPU while the GPU updates the rest of
the trailing submatrix

 The rest of the 7 host cores update the last 7 NB
host columns

Parallel Dense Matrix
Computations – Tile-Based
Cholesky and QR

- For heterogeneous architectures

- Communication-avoiding algorithms

Heterogeneous Tile Algorithms for
Heterogeneous Architectures
General Strategy

 Hetrogeneous tile algorithms

 Heterogeneous multi-level block-
cyclic data distribution

 Source:

 Paper: “F. Song, S. Tomov, and J.
Dongarra. Enabling and Scaling
Matrix Computations on
Heterogeneous Multi-core and Multi-
GPU Systems. In In the Proceedings

General Strategy

 Small tiles on the host, large tiles on
the GPUs

 A two-level 1-D block-cyclic method

 First map a matrix to only CPUs using
a 1-D column block cyclic distribution,
and then cut out slices for GPUs

Hybrid Tile Data Layout

 Divide a matrix into a set of small and
large tiles

 At the top level, divide the matrix into
large square tiles of size BxB

 Subdivide each top level tile of size
BxB
into a number of small rectangular
tiles of size Bxb, and a remaining tile

 Figure (a) – divide the 12x12 matrix
into four 6x6 tiles, then divide each
6x6 tiles into two 6x1 and one 6x4

Heterogeneous Tile Cholesky
Factorization

 Each aij represents a small tile of size
Bxb, and each Aij represents a large
tile of size Bx(B-b(s-1))

Heterogeneous Tile Cholesky
Factorization - Illustration

 Matrix divided into 3x3 tiles, i.e., p=3

 Each tile divided into one small and
one large tile, i.e., s=2

 Factorization goes through six (pxs)
iterations

Illustration Continued

 Solve L11

Apply L11 to update its right A12

Illustration Continued

 Computes TRSMs for the two tiles
below L11

Illustration Continued

 Apply GSMMs to update all tiles
Second iteration to
the right of the first tile column
Start from the second tile column

Heterogeneous 1D Column
Block Cyclic Distribution

QR Factorization, TSQR, CAQR

 Sources, Credits, some slides taken
from:

 Slides on “Communication Avoiding
QR and LU”, CS 294 lecture slides,
Laura Grigori, ALPINES INRIA
Rocquencourt - LJLL, UPMC

 https://who.rocq.inria.fr/Laura.Grigori
/TeachingDocs/CS-
294_Spr2016/Slides_CS-
294_Spr2016/CS294_Spr16_CALUQR
.pdf

https://who.rocq.inria.fr/Laura.Grigori/TeachingDocs/CS-294_Spr2016/Slides_CS-294_Spr2016/CS294_Spr16_CALUQR.pdf

QR Factorization for Tall and
Skinny Matrices (TSQR)

 Parallelization using Binary Tree

Parallel TSQR Factorization on a
Binary Tree of Four Processors

Steps – Stage 0

Steps

 Stagae 1 –

 Stage 2 –

 Complete Factorization

QR on General Trees using 16
blocks and 4 processors

Parallel CAQR (Communication-
avoiding QR)

 Uses parallel TSQR
 mxn matrix distributed in 2D block-cyclic

distribution with block size b
 At each step of factorization, TSQR is used to

factor a panel of columns
 Followed by trailing matrix update – applying the

Householder vectors to the rest of the matrix
 The update corresponding to the QR factorization

at the leaves of the TSQR tree is performed
locally on every processor

 The updates corresponding to the upper levels of
the TSQR tree are performed between groups of
neighboring trailing matrix processors

Parallel CAQR

 Only one of the trailing matrix
processors in each neighbour group
continues to be involved in successive
trailing matrix updates

 Allows overlap of computation and
communication – uninvolved
processors can finish their
computations in parallel with
successive reduction stages

