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Examples:
Decision Trees

  Support Vector Machine (SVM)
  Maximum Entropy (MaxEnt)
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Examples:
Self-Training
Co-Training
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With Unlabeled DataWithout Unlabeled Data

Why SSL?

How can unlabeled data be helpful?

Example from [Belkin et al., JMLR 2006]

Labeled 
Instances

Decision
Boundary

More accurate 
decision boundary 
in the presence of 
unlabeled instances

Unlabeled
Instances
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Inductive vs Transductive

SVM, 
Maximum Entropy

X

Manifold 
Regularization

Label Propagation 
(LP), MAD, MP, ...

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

Inductive
(Generalize to
Unseen Data)

Transductive
(Doesn’t Generalize to

Unseen Data)

See Chapter 25 of SSL Book: http://olivier.chapelle.cc/ssl-book/discussion.pdf

Most Graph SSL algorithms are non-parametric 
(i.e., # parameters grows with data size)
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Focus of this 
talk

http://olivier.chapelle.cc/ssl-book/discussion.pdf
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• Co-Training
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Why Graph-based SSL?

• Some datasets are naturally represented by a graph

• web, citation network, social network, ...

• Uniform representation for heterogeneous data

• Easily parallelizable, scalable to large data

• Effective in practice
Graph SSL

Supervised

Non-Graph SSL

Text Classification
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Graph-based SSL

• Two stages
• Graph construction (if not already present)
• Label Inference

Smoothness Assumption 
If two instances are similar 

according to the graph, then 
output labels should be similar
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Graph Construction

• Neighborhood Methods

• k-NN Graph Construction (k-NNG)

• e-Neighborhood Method

• Metric Learning

• Other approaches
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Issues with k-NNG

• Results in irregular graphs
• some nodes may end up with 

higher degree than other nodes

Node of degree 4 in
the k-NNG (k = 1)

13

• Not scalable (quadratic)
• Results in an asymmetric graph

• b is the closest neighbor of a, but not 
the other way

a b c
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Issues with e-Neighborhood

• Not scalable

• Sensitive to value of e : not invariant to scaling 

• Fragmented Graph: disconnected components

Figure from [Jebara et al., ICML 2009]

e-NeighborhoodData

Disconnected
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Graph Construction using  
Metric Learning

• Supervised Metric Learning

• ITML [Kulis et al., ICML 2007]

• LMNN [Weinberger and Saul, JMLR 2009]

• Semi-supervised Metric Learning

• IDML [Dhillon et al., UPenn TR 2010]

xi xj
wij / exp(�DA(xi, xj))

Estimated using 
Mahalanobis metric 
learning algorithms

DA(xi, xj) = (xi � xj)
T
A(xi � xj)
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Benefits of Metric Learning for 
Graph Construction

Careful graph construction is critical!
[Dhillon et al., UPenn TR 2010]

Graph constructed 
using supervised 
metric learning

0

0.125

0.25

0.375

0.5

Amazon Newsgroups Reuters Enron A Text

Original RP PCA ITML IDML

Er
ro

r

100 seed and1400 test instances, all inferences using LP

Graph constructed using 
semi-supervised metric 
learning
[Dhillon et al., 2010]
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Other Graph Construction  
Approaches

• Local Reconstruction

• Linear Neighborhood [Wang and Zhang, ICML 2005]

• Regular Graph: b-matching [Jebara et al., ICML 2008]

• Fitting Graph to Vector Data [Daitch et al., ICML 2009]

• Graph Kernels

• [Zhu et al., NIPS 2005]
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Outline

• Motivation

• Graph Construction

• Inference Methods

• Scalability

• Applications

• Conclusion & Future Work

- Label Propagation
- Modified Adsorption
- Measure Propagation
- Sparse Label Propagation
- Manifold Regularization
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• Laplacian (un-normalized) of a graph:

L = D �W,where Dii =
X

j

Wij , Dij( 6=i) = 0

19

Graph Laplacian



• Laplacian (un-normalized) of a graph:

1

12

3

a

b

c

d

L = D �W,where Dii =
X

j

Wij , Dij( 6=i) = 0

19

Graph Laplacian



• Laplacian (un-normalized) of a graph:
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L = D �W,where Dii =
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Graph Laplacian (contd.)
• L is positive semi-definite (assuming non-negative weights)

• Smoothness of prediction f over the graph in 
terms of the Laplacian:

1
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Notations
Seed Scores

Estimated 
Scores

Label 
RegularizationŶv,l : score of estimated label l on node v 

Yv,l : score of seed label l on node v 

Rv,l : regularization target for label l on node v 

S : seed node indicator (diagonal matrix) 

v

Wuv : weight of edge (u, v) in the graph
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LP-ZGL [Zhu et al., ICML 2003]

argmin
Ŷ

m∑

l=1

Wuv(Ŷul − Ŷvl)
2

Yul = Ŷul, ∀Suu = 1such that

=

m∑

l=1

Ŷ
T
l LŶl

Graph
Laplacian

23



LP-ZGL [Zhu et al., ICML 2003]

argmin
Ŷ
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LP-ZGL [Zhu et al., ICML 2003]

argmin
Ŷ

m∑

l=1

Wuv(Ŷul − Ŷvl)
2

Yul = Ŷul, ∀Suu = 1such that

Smooth

Match Seeds 
(hard)

• Smoothness 

•  two nodes connected by 
an edge with high weight 
should be assigned similar 
labels

• Solution satisfies harmonic 
property

=

m∑

l=1

Ŷ
T
l LŶl

Graph
Laplacian
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• Scalability

• Applications

• Conclusion & Future Work

- Label Propagation
- Modified Adsorption
- Manifold Regularization
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- Measure Propagation
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[Talukdar and Crammer, ECML 2009]

25



Modified Adsorption (MAD) 
[Talukdar and Crammer, ECML 2009]

argmin
Ŷ
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• Ŷ vl: weight of label l on node v

• Y vl: seed weight for label l on node v

• S: diagonal matrix, nonzero for seed nodes

• Rvl: regularization target for label l on node v

Match Seeds (soft) Smooth

Seed Scores

Estimated 
Scores

Label Priorsv

′′

25



Modified Adsorption (MAD) 
[Talukdar and Crammer, ECML 2009]

argmin
Ŷ
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⇥SŶ l � SY l⇥2 + µ1

⇤

u,v
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MAD’s Objective 
is Convex
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Solving MAD Objective

• Can be solved using matrix inversion (like in LP)

• but matrix inversion is expensive

• Instead solved exactly using a system of linear 
equations (Ax = b)

• solved using Jacobi iterations

• results in iterative updates

• guaranteed convergence

• see [Bengio et al., 2006] and                                          
[Talukdar and Crammer, ECML 2009] for details
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Solving MAD using Iterative Updates

Inputs Y ,R : |V |⇥ (|L|+ 1), W : |V |⇥ |V |, S : |V |⇥ |V | diagonal
ˆY  Y
M = W +W>

Zv  Svv + µ1
P

u 6=v Mvu + µ2 8v 2 V
repeat

for all v 2 V do

ˆY v  1
Zv

⇣
(SY )v + µ1Mv· ˆY + µ2Rv

⌘

end for

until convergence

′′

Seed Prior

0.75
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0.60

Current label 
estimate on ba b

c

v
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• Importance of a node can be discounted
• Easily Parallelizable: Scalable (more later)



Other Graph-based SSL Methods

• TACO [Orbach and Crammer, ECML 2012]

• SSL on Directed Graphs

• [Zhou et al, NIPS 2005], [Zhou et al., ICML 2005]

• Spectral Graph Transduction [Joachims, ICML 2003]

• Graph-SSL for Ordering

• [Talukdar et al., CIKM 2012]

• Learning with dissimilarity edges

• [Goldberg et al., AISTATS 2007]
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 Challenges with large unlabeled data:

• Constructing graph from large data

• Scalable inference over large graphs

[Subramanya & Bilmes, JMLR 2011]30
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• Inference Methods

• Scalability

• Applications

• Conclusion & Future Work

- Scalability Issues
- Node reordering
      [Subramanya & Bilmes, JMLR 2011;
       Bilmes & Subramanya, 2011]

- MapReduce Parallelization
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Speed-up on SMP after Node Ordering

[Subramanya & Bilmes, JMLR, 2011]34
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Graph-based algorithms are 
amenable to distributed processing
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When to use Graph-based SSL  
and which method?

• When input data itself is a graph (relational data)

• or, when the data is expected to lie on a manifold

• MAD, Quadratic Criteria (QC)

• when labels are not mutually exclusive

• MADDL: when label similarities are known

• Measure Propagation (MP)

• for probabilistic interpretation

• Manifold Regularization

• for generalization to unseen data (induction)
37
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Graph-based SSL: Summary

• Provide flexible representation

• for both IID and relational data

• Graph construction can be key

• Scalable: Node Reordering and MapReduce

• Can handle labeled as well as unlabeled data

• Can handle multi class, multi label settings

• Effective in practice

38
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Open Challenges

• Graph-based SSL for Structured Prediction

• Algorithms: Combining Inductive and graph-based methods

• Applications: Constituency and dependency parsing, Coreference

• Scalable graph construction, especially with      
multi-modal data

• Extensions with other loss functions, sparsity, etc.
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Thanks!

Web: http://graph-ssl.wikidot.com/
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