Scalable Learning & Inference
Over Graphs

Partha Pratim Talukdar
Indian Institute of Science
ppt@cds.iisc.ac.in

February 17, 2015



Supervised Learning

Labeled Data > Lear|.1|ng —> Model
Algorithm




Supervised Learning

Labeled Data > Lear|.1|ng —> Model
Algorithm

Examples:
Decision Trees
Support Vector Machine (SVM)
Maximum Entropy (MaxEnt)
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Why SSL?

How can unlabeled data be helpful?

More accurate
decision boundary

Labeled in the presence of
Instances \‘1:~ unlabeled instances
sss N “a ','

y ~ . . ot o= l‘ DN"
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"¢¢' ’ I Dfdﬂ, cﬂ_‘\ %D J
| )‘ fw.
Decision | L - j
Boundary | “emmrrn ® | Unlabeled
Instances
Without Unlabeled Data With Unlabeled Data

Example from [Belkin et al., JMLR 2006]
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Inductive vs Transductive

Inductive Transductive
(Generalize to (Doesn’t Generalize to
Unseen Data) Unseen Data)
Supervised SVM, X | Focus of this
(Labeled) |Maximum Entropy Ak

Semi-SJrUPe'”Vised Manifold Label Propagation
(Labeled * Unlabele) ] Regularization | (LP), MAD, MP....

Most Graph SSL algorithms are non-parametric
(i.e., # parameters grows with data size)

See Chapter 25 of SSL Book: http://olivier.chapelle.cc/ssl-book/discussion.pdf
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Two Popular SSL Algorithms

® Self Training

® Co-Training

Given:
e a set L of labeled training examples

e a set U/ of unlabeled examples

Create a pool U’ of examples by choosing u examples at random from U

Loop for k iterations:
Use L to train a classifier /iy that considers only the z; portion of x
Use L to train a classifier ho that considers only the x4 portion of x
Allow h; to label p positive and n negative examples from U’
Allow hs to label p positive and n negative examples from U’

Add these self-labeled examples to L

Randomly choose 2p + 2n examples from U to replenish U’
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Why Graph-based SSL?

® Some datasets are naturally represented by a graph

® web, citation network, social network, ...

® Uniform representation for heterogeneous data

® FEasily parallelizable, scalable to large data

® Effective in practice _
- Graph SSL |

T~ Non-Graph SSL |

)

" Supervised |

Text Classification

0 100 200 300 400 500 600
Number of Labeled Documents
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Graph-based SSL

Similarity

“business” “politics”

“business” “politics”
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Graph-based SSL

Smoothness Assumption

If two instances are similar X,
according to the graph, then N

output labels should be similar

X;  sim(x;,X;)

* Two stages
* Graph construction (if not already present)
* Label Inference
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Graph Construction

® Neighborhood Methods

® Kk-NN Graph Construction (k-NNG)
® e-Neighborhood Method

® Metric Learning

® Other approaches
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Issues with k-NNG

* Not scalable (quadratic)
* Results in an asymmetric graph ©, 0O, ©

* b is the closest neighbor of a, but not
the other way

* Results in irregular graphs O

* some nodes may end up with

higher degree than other nodes O ‘ O
Vf\

O Node of degree 4 in
the k-NNG (k= 1)
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Issues with ¢-Neighborhood

* Not scalable

* Sensitive to value of e : not invariant to scaling

* Fragmented Graph: disconnected components
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Figure from [Jebara et al., ICML 2009]
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Graph Construction using
Metric Learning

@ wi; o< exp(—Da(x;, x;)) @

® Supervised Metric Learning

 ITML [Kulis et al., ICML 2007] Estimated using

learning algorithms

Mahalanobis metric
® | MNN [Weinberger and Saul, JMLR 2009]

® Semi-supervised Metric Learning

e |DML [Dhillon et al., UPenn TR 2010]

|5
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Benefits of Metric Learning for
Graph Construction

B Original M RP PCA [ ITML IDML w
0.5 A .

4
Gr.'aph constr:ucted Ry Graph constructed using
usmg.super\./lsed ! semi-supervised metric
metric learning learning

0.375 [Dhillon et al., 2010]

0.25

Error

0.125

Amazon Newsgroups Reuters Enron A Text

100 seed and 1400 test instances, all inferences using LP

16 [Dhillon et al., UPenn TR 2010]



Benefits of Metric Learning for
Graph Construction

B Original M RP PCA [ ITML IDML w
0.5 A .

CUETEL R I'/' Graph constructed using
0.375
0.25
0.125 r
0

using supervised semi-supervised metric
metric learning learning
Amazon Newsgroups Reuters Enron A Text

[Dhillon et al., 2010]

Error

100 seed and 1400 test instances, all inferences using LP

| Careful graph construction is critical! |

16 [Dhillon et al., UPenn TR 2010]




Other Graph Construction
Approaches

® | ocal Reconstruction

® Linear Neighborhood [Wang and Zhang, ICML 2005]
® Regular Graph: b-matching [Jebara et al., ICML 2008]
® Fitting Graph to Vector Data [Daitch et al., ICML 2009]

® Graph Kernels
® [Zhu et al, NIPS 2005]
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Graph Laplacian

* Laplacian (un-normalized) of a graph:

L =D —W,where Dy = » W;j, Dyjz =0

]
a b ¢ d

a3 1 -2 0

bl -1 4 -3 0

12 3 6 4

410 01 1

\ J
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Graph Laplacian (contd.)
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Graph Laplacian (contd.)

°| is positive semi-definite (assuming non-negative weights)

* Smoothness of prediction f over the graph in
terms of the Laplacian:

Measure of
Non-Smoothness

|
“
“
-

Vector of scores for

single label on nodes

YTLf = ZWw — £3)?

25

T = [1113] ff=11105 23]

fTLf =4  Smooth ' fTLf — 988  Not Smooth |
20
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Notations

Seed Scores

Label
Regularization

Yv,l : score of seed label | on node v

A

Yv,l : score of estimated label | on node v

Estimated
Scores

Rv,z : regularization target for label | on node v

S  :seed node indicator (diagonal matrix)

W - weight of edge (u, v) in the graph

22



LP-ZGL [Zhu et al,, ICML 2003]

m m

. ' > N2 _ N\ VT

arg min E Wo(Yur — Yo1)? =) Y, LY,
Y= =1

such that Yul — Yula VSM =3 G:‘aph

Laplacian

23



LP-ZGL [Zhu et al,, ICML 2003]

Smooth
m m
. > ” 2 T 1y,
arg min E Wo(Yur — Yo )2 =D Y, LY,
Y li=1 =
such that Yul — Yula VSM =1 G:‘aph

Laplacian
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LP-ZGL [Zhu et al,, ICML 2003]

Smooth
' m m
. A " \2 > ’
arg min Z Wo Y — Yo )2 [= ) Ysz z
Y li=1 =t
such that [Yul — yula vsuu — 1] G:‘aPh

Laplacian

Match Seeds
(hard)
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LP-ZGL [Zhu et al,, ICML 2003]

Smooth
m m
. 3 ” 2 ¥ )
arg min Z Wo Y — Yo )2 [= ) Ysz z
Y li=1 =t
such that [Yul — yula vsuu — 1] G:‘aPh
Match Seeds SR
(hard)

® Smoothness

® two nodes connected by
an edge with high weight
should be assigned similar

labels
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LP-ZGL [Zhu et al,, ICML 2003]

Smooth
— .
. A A 9 o%7h N
alg 1111 E Wuv (Yul — qul) — ZYZ {f l
Yoli= =

such that [Yul — Yul, \V/Suu — ].] G:*aph

Laplaci
Match Seeds R

(hard)
® Smoothness ® Solution satisfies harmonic
® two nodes connected by property

an edge with high weight
should be assigned similar

labels
23
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[Talukdar and Crammer, ECML 2009]
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Modified Adsorption (MAD)

[ Talukdar and Crammer, ECML 2009]

e m labels, +1 dummy label

M=W"+ W'is the symmetrized weight matrix

A

Y ,;: weight of label [ on node v

Y ,;: seed weight for label [ on node v
S: diagonal matrix, nonzero for seed nodes

R,;: regularization target for label [ on node v

25

1Ye |

'LX

<Y, )

HSYZ — SYlH2 + 1 ZMUU(}A}ul — fffl)l)Z + ,UQH}AZZ — RlH2

[=1 L u,v

Seed Scores

Label Priors

Estimated
Scores




argmin Z HS?[ — SY[H2 - 1 ZMQ,U(}A/UJZ — sz)Z + Mz”ffl T RlH2

=1 [\ J U,V

Modified Adsorption (MAD)

[ Talukdar and Crammer, ECML 2009]

Match Seeds (soft)

e m labels, +1 dummy label

M=W"+ W'is the symmetrized weight matrix

A

Y ,;: weight of label [ on node v

Y ,;: seed weight for label [ on node v
S: diagonal matrix, nonzero for seed nodes

R,;: regularization target for label [ on node v

25

1Ye |

'LX

<Y, )

Seed Scores

Label Priors

Estimated
Scores




m-+1
arg min Z 1SY; — SY||* B 11
Y
[=1 \ J

Modified Adsorption (MAD)

[ Talukdar and Crammer, ECML 2009]

Match Seeds (soft)

Smooth

e m labels, +1 dummy label

Z M (Y

L.

Y ﬁmu?z—w

M=W"+ W'is the symmetrized weight matrix

A

Y ,;: weight of label [ on node v

1Ye |

Y ,;: seed weight for label [ on node v V |
S: diagonal matrix, nonzero for seed nodes \ Y"" >

R,;: regularization target for label [ on node v

25

Seed Scores

Label Priors

Estimated
Scores




Modified Adsorption (MAD)

[ Talukdar and Crammer, ECML 2009]

arg min Z |SY,

[=1 [\

— SY|°

Match Seeds (soft)

+ [

Match Priors
Smooth (Regularizer)

e m labels, +1 dummy label

ZMuv ul — )1+M2Hffl Rl2]|

L.

e M =W"'+ W'is the symmetrized weight matrix

A

e Y ;. weight of label [ on node v I _I Seed Scores

e Y ;: seed weight for label [ on node v \4

R, Label Priors

@ Estimated
. . v
e S: diagonal matrix, nonzero for seed nodes Scores

e R,;: regularization target for label [ on node v
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Modified Adsorption (MAD)

[ Talukdar and Crammer, ECML 2009]

Match Seeds (soft)

m-+1
arg min Z 1SY; — SY||* B 11
Y
[=1 \ J

Match Priors
Smooth (Regularizer)

e m labels, +/1\ dummy label

ZMuv ul — )1+M2Hffl Rl2]|

L.

o M — C for none-of-the-above label )d weight matrix

A

e Y ;. weight of label [ on node v I _I Seed Scores

e Y ;: seed weight for label [ on node v \4

R, Label Priors

@ Estimated
. . v
e S: diagonal matrix, nonzero for seed nodes Scores

e R,;: regularization target for label [ on node v
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Modified Adsorption (MAD)

[ Talukdar and Crammer, ECML 2009]

arg min ISY,
=1 &

— SY|°

Match Seeds (soft)

+ [

Match Priors

Smooth (Regularizer)

e m labels, +/1\ dummy label

Z M (Y

L.

=Y ﬁmu?z—w]

o M — C for none-of-the-above label )d weight matrix

A

e Y ;. weight of label [ on node v

e Y ;: seed weight for label [ on node v

e S: diagonal matrix, nonzero for seed nodes

I
Y Seed Scores
V R, Label Priors

> Estimated
YU Scores

e R,;: regularization target for label [ on node v

MAD has extra regularization compared to LP-ZGL
[Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]




Modified Adsorption (MAD)

[ Talukdar and Crammer, ECML 2009]

arg min ISY,
=1 &

— SY|°

Match Priors

Match Seeds (soft) Smooth (Regularizer)

b S M (Y - ﬁmufﬁ - RzH?]

L.

e m labels, +/1\ dummy label

o M — C for none-of-the-above label }d weight matrix

A

: |
e Y ;. weight of label [ on node v Y. Seed Scofes
. v Label Pri
e Y ;: seed weight for label [ on node v \% abel Friors
\D Estimated
e S: diagonal matrix, nonzero for seed nodes Y/ Scores

e R,;: regularization target for label [ on node v

MAD’s Obijective
is Convex

MAD has extra regularization compared to LP-ZGL
[Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]
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® Can be solved using matrix inversion (like in LP)

® but matrix inversion is expensive
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Solving MAD Obijective

® Can be solved using matrix inversion (like in LP)

® but matrix inversion is expensive
® |nstead solved exactly using a system of linear
equations (Ax = b)
® solved using Jacobi iterations
® results in iterative updates
® guaranteed convergence

® see [Bengio et al.,2006] and
[Talukdar and Crammer, ECML 2009] for details
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Solving MAD using Iterative Updates

Inputs Y, R : |V| x (|[L|+ 1), W :|V]| x |V]|, §:|V]| x |V| diagonal
Y +—Y ,
M =W + Wfr
Lo %SUU—F,LLlEU#UMUu—FILLQ YveV
repeat

for allv €V do A

Y, - ((SY),U M, Y + MQRU)

end for

until convergence

Current label | .7 |
estimateon b ¢° ’

0.60 0.75
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Y «Y /
M=Ww+w"
Lo %SUU—F,LLlEU#UMUu—FILLQ YveV
repeat

for allv €V do A

Y, - ((SY),U M, Y + MQRU)

end for

until convergence

New label
estimate on v
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Solving MAD using Iterative Updates

Inputs Y, R: |V| x (|[L|+ 1), W : |[V| x |V|, S:|V]| x |V]| diagonal
Y «Y /
M=Ww+w"
Lo %SW—F/“ZU#UMW—F/LQ YveV
repeat

for allv €V do A

Y, - ((SY),U M, Y + MRU)

end for

until convergence

New label
estimate on v

4 )

* Importance of a node can be discounted

&

* Easily Parallelizable: Scalable (more later)
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Other Graph-based SSL Methods

® TACO [Orbach and Crammer, ECML 2012]

® SSL on Directed Graphs
® [Zhou et al, NIPS 2005], [Zhou et al., ICML 2005]

® Spectral Graph Transduction [Joachims, ICML 2003]

® Graph-SSL for Ordering
® [Talukdar et al.,, CIKM 2012]

® | earning with dissimilarity edges

e [Goldberg et al., AISTATS 2007]

28
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More (Unlabeled) Data is Better Data
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Phone Recognition Accuracy
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More (Unlabeled) Data is Better Data
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Inference Methods Scalability Issues

[ ode reordering
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Speed-up on SMP after Node Ordering
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® When input data itself is a graph (relational data)

® or,when the data is expected to lie on a manifold

® MAD, Quadratic Criteria (QC)

® when labels are not mutually exclusive

e MADDL: when label similarities are known

® Measure Propagation (MP)

® for probabilistic interpretation

® Manifold Regularization

® for generalization to unseen data (induction)
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Graph-based SSL: Summary

® Provide flexible representation

® for both IID and relational data

® Graph construction can be key

® Scalable: Node Reordering and MapReduce
® Can handle labeled as well as unlabeled data
® Can handle multi class, multi label settings

® Effective in practice
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Open Challenges

® Graph-based SSL for Structured Prediction

® Algorithms: Combining Inductive and graph-based methods

® Applications: Constituency and dependency parsing, Coreference

® Scalable graph construction, especially with
multi-modal data

® Extensions with other loss functions, sparsity, etc.
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Thanks!

Web: http://graph-ssl.wikidot.com/
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