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Motivation

 Sparse computations much more 
challenging than dense due to 
complex data structures and memory 
references

 Many physical systems produce 
sparse matrices



Sparse Matrix-Vector 
Multiplication



Cache in GPUs

 Fermi has 16KB/48KB L1 cache per SM, and a 
global 768 KB L2 cache

 Each cache line is 128 bytes, to provide high 
memory bandwidth

 Thus when using 48KB cache, only 
(48KB/128bytes=384) cache lines can be stored

 GPUs execute up to 1536 threads per SM

 If all threads access different cache lines, 384 of 
them will get cache hits, and others will get cache 
miss

 Thus threads in the same block should work on the 
same cache lines



Compressed Sparse Row (CSR) 
Format

 SpMV (Sparse Matrix-Vector 
Multiplication) using CSR



Naïve CUDA Implementation

 Assign one thread to each row

 Define block size as multiple of warp size, e.g., 128

 Can handle max of 128x65535=8388480 rows, 
where 65535 is the max number of blocks



Naïve CUDA Implementation -
Drawbacks

 For large matrices with several 
elements per row, the 
implementation suffers from a high 
cache miss rate since cache can’t hold 
all cache lines being used

 Thus coalescing/caching is poor for 
long rows

 If nnz per row have high variance, 
warp divergence will occur



Thread Cooperation

 Multiple threads can be assigned to work on the 
same row

 Cooperating threads act on adjacent elements of 
the row; perform multiplication with elements of 
vector x; add up their results in shared memory 
using reduction

 First thread of the group writes the result to 
vector y

 If the number of cooperating threads, coop, is less 
than warp size, the synchronization between 
cooperating threads is implicit



Analysis

 Same cache lines are used by 
cooperating threads

 Improves coalescing/caching

 If the length of the row is not a 
multiple of 32, can lead to warp 
divergence, and loss in performance

Coop = 4

Coalesced access; Good caching Warp divergence



Granularity

 If a group of cooperating threads act on only row, 
then the number of blocks required for entire 
matrix may be more than 65535

 Thus, more than one row per cooperating group can 
be processed

 Number of rows processing by a cooperating group 
is denoted as repeat

 A thread block processes repeat*blockSize/coop 
consecutive rows

 An algorithm can be parametrized by blockSize, 
coop and repeat



Parametrized Algorithm
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Motivation

 Sparse computations much more 
challenging than dense due to 
complex data structures and memory 
references

 Many physical systems produce 
sparse matrices

 Commonly used computations –
sparse Cholesky factorization



Sparse Cholesky

 To solve Ax = b;

 Most of the research and the base 
case are in sparse symmetric positive 
definite matrices

 A = LLT; Ly = b; LTx = y;

 Cholesky factorization introduces     
fill-in



Column oriented left-looking 
Cholesky



Fill-in
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Permutation Matrix or Ordering

 Thus ordering to reduce fill or to enhance 
numerical stability

 Choose permutation matrix P so that 
Cholesky factor L’ of PAPT has less fill than 
L.

 Triangular solve:

L’y = Pb; L’Tz = y; x = PTz

 The fill can be predicted in advance

 Static data structure can be used –
symbolic factorization



Steps

 Ordering:
 Find a permutation P of matrix A, 

 Symbolic factorization:
 Set up a data structure for the Cholesky 

factor L of PAPT, 

 Numerical factorization:
 Decompose PAPT into LLT, 

 Triangular system solution:
 Ly = Pb; LTz = y; x = PTz.



Sparse Matrices and Graph Theory
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Sparse and Graph
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Ordering

 The above order of elimination is 
“natural”

 The first heuristic is minimum degree 
ordering

 Simple and effective

 But efficiency depends on tie breaking 
strategy

 Difficult to parallelize!



Minimum degree ordering for the 
previous Matrix
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Ordering

 Another ordering is nested dissection 
(divide-and-conquer)

 Find separator S of nodes whose removal 
(along with edges) divides the graph into 2 
disjoint pieces

 Variables in each pieces are numbered 
contiguously and variables in S are 
numbered last

 Leads to bordered block diagonal non-zero 
pattern

 Can be applied recursively
 Can be parallelized using divide-and-

conquer approach



Nested Dissection Illustration
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Nested Dissection Illustration
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Numerical Factorization

cmod(j, k): modification of column j by column k, k < j

cdiv(j) : division of column j by a scalar



Algorithms



Elimination Tree

 T(A) has an edge between two 
vertices i and j, with i > j, if i = p(j), 
i.e., L(i, j) is first non-zero entry in 
the jth column below diagonal. i is 
the parent of j.
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Parallelization of Sparse Cholesky

 Most of the parallel algorithms are 
based on elimination trees

 Work associated with two disjoint 
subtrees can proceed independently

 Same steps associated with 
sequential sparse factorization

 One additional step: assignment of 
tasks to processors



Ordering in Parallel – Nested 
dissection

 Nested dissection can be carried in parallel

 Also leads to elimination trees that can be 
parallelized during subsequent 
factorizations

 But parallelization only in the later levels of 
dissection

 Can be applied to only limited class of 
problems



Nested Dissection Algorithms

 Use a graph partitioning heuristic to 
obtain a small edge separator of the 
graph 

 Transform the small edge separator 
into a small node separator

 Number nodes of the separator last 
and recursively apply



Kernighan-Lin for ND

 Form a random initial partition

 Form edge separator by applying K-L 
to form partitions P1 and P2

 Let V1 in P1 such that nodes in V1 
incident on atleast one edge in the 
separator set. Similarly V2

 V1 U V2 (wide node separator),

 V1 or V2 (narrow node separator) by 
Gilbert and Zmijewski (1987)



Step 2: Mapping Problems on to 
processors

 Based on elimination trees
 Various strategies to map columns to processors 

based on elimination trees.
 Two algorithms:

 Subtree-to-Subcube
 Bin-Pack by Geist and Ng



Naïve Strategy
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Strategy 2 – Subtree-to-subcube 
mapping

 Select an appropriate set of P subtrees of 
the elimination tree, say T0, T1…

 Assign columns corresponding to Ti to Pi

 Where two subtrees merge into a single 
subtree, their processor sets are merged 
together and wrap-mapped onto the 
nodes/columns of the separator that begins 
at that point.

 The root separator is wrap-mapped onto 
the set of all processors.



Strategy 2
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Strategy 3: Bin-Pack (Geist and 
Ng)

 Subtree-to-subcube mapping is not good for unbalanced 
trees

 Try to find disjoint subtrees
 Map the subtrees to p bins based on first-fit-decreasing bin-

packing heuristic
 Subtrees are processed in decreasing order of workloads
 A subtree is packed into the current lightest bin

 Weight imbalance, α – ratio between lightest and heaviest 
bin

 If α >= user-specified tolerance, γ, stop
 Else explore the heaviest subtree from the heaviest bin and 

split into subtrees. These subtrees are then mapped to p 
bins and repacked using bin-packing again

 Repeat until α >= γ or the largest subtree cannot be split 
further

 Load balance based on user-specified tolerance
 For the remaining nodes from the roots of the subtrees to 

the root of the tree, wrap map.



Parallel Numerical Factorization –
Submatrix Cholesky

Tsub(k)

Tsub(k) is partitioned into various subtasks Tsub(k,1),…,Tsub(k,P) 
where

Tsub(k,p) := {cmod(j,k) | j C Struct(L*k) ∩ mycols(p)}



Definitions

 mycols(p) – set of columns owned by p

 map[k] – processor containing column k

 procs(L*k) = {map[j] | j in Struct(L*k)}



Parallel Submatrix Cholesky

for j in mycols(p) do
if j is a leaf node in T(A) do

cdiv(j)
send L*j to the processors in procs(L*j)
mycols(p) := mycols(p) – {j}

while mycols(p) ≠ 0 do
receive any column of L, say L*k

for j in Struct(L*k) ∩ mycols(p) do

cmod(j, k)
if column j required no more cmod’s do

cdiv(j)
send L*j to the processors in procs(L*j)
mycols(p) := mycols(p) – {j}

Disadvantages:

1. Communication is not localized



Parallel Numerical Factorization –
Sub column Cholesky

Tcol(j) is partitioned into various subtasks Tcol(j,1),…,Tcol(j,P) 
where

Tcol(j,p) aggregates into a single update vector every update 
vector u(j,k) for which k C Struct(Lj*) ∩ mycols(p)



Definitions

 mycols(p) – set of columns owned by p

 map[k] – processor containing column k

 procs(Lj*) = {map[k] | k in Struct(Lj*)}

 u(j, k) – scaled column accumulated into 
the factor column by cmod(j, k)



Parallel Sub column Cholesky

for j:= 1 to n do
if j in mycols(p) or Struct(Lj*) ∩ mycols(p) ≠ 0 do

u = 0
for k in Struct(Lj*) ∩ mycols(p) do

u = u + u(j,k)
if map[j] ≠ p do

send u to processor q = map[j]
else

incorporate u into the factor column j
while any aggregated update column for column j remains unreceived do

receive in u another aggregated update column for column j
incoprporate u into the factor column j

cdiv(j)

Has uniform and less communication than sub matrix version for 
subtree-subcube mapping



A refined version – compute-ahead 
fan-in

 The previous version can lead to processor 
idling due to waiting for the aggregates for 
updating column j

 Updating column j can be mixed with 
compute-ahead tasks:

1. Aggregate u(i, k) for i > j for each 
completed column k in Struct(Li*) ∩
mycols(p)

2. Receive aggregate update column for i > j 
and incorporate into factor column i



Sparse Iterative Methods



Iterative & Direct methods – Pros 
and Cons.

 Iterative methods do not give 
accurate results.

 Convergence cannot be predicted

 But absolutely no fills.



Parallel Jacobi, Gauss-Seidel, SOR

 For problems with grid structure (1-
D, 2-D etc.), Jacobi is easily 
parallelizable

 Gauss-Seidel and SOR need recent 
values. Hence ordering of updates 
and sequencing among processors

 But Gauss-Seidel and SOR can be 
parallelized using red-black ordering 
or checker board



2D Grid example
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Red-Black Ordering

 Color alternate nodes in each 
dimension red and black

 Number red nodes first and then 
black nodes

 Red nodes can be updated 
simultaneously followed by 
simultaneous black nodes updates



2D Grid example – Red Black 
Ordering
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In general, reordering can 
affect convergence



Graph Coloring
 In general multi-colored graph coloring 

Ordering for parallel computing of Gauss-
Seidel and SOR

 Graph coloring can also be used for 
parallelization of triangular solves

 The minimum number of parallel steps in 
triangular solve is given by the chromatic 
number of symmetric graph

 Unknowns corresponding to nodes of same 
color are solved in parallel; computation 
proceeds in steps

 Thus permutation matrix, P based on graph 
color ordering



Parallel Triangular Solve based on 
Multi-Coloring

 Unknowns corresponding to the vertices of same color can 
be solved in parallel

 Thus parallel triangular solve proceeds in steps equal to the 
number of colors

1, 1

2, 7
3, 2

4, 3 6, 8

7, 9

5, 4

8, 5
9, 6

10, 10

Original Order New Order
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