Sparse LA

Sathish Vadhiyar

Motivation

Sparse computations much more
challenging than dense due to
complex data structures and memory
references

Many physical systems produce
sparse matrices

Sparse Matrix-Vector
Multiplication

Cache in GPUs

[

[l

Fermi has 16KB/48KB L1 cache per SM, and a
global 768 KB L2 cache

Each cache line is 128 bytes, to provide high
memory bandwidth

Thus when using 48KB cache, only
(48KB/128bytes=384) cache lines can be stored

GPUs execute up to 1536 threads per SM

If all threads access different cache lines, 384 of
them will get cache hits, and others will get cache
miss

Thus threads in the same block should work on the

same cache lines

Compressed Sparse Row (CSR)
Format

SpMV (Sparse Matrix-Vector
Multiplication) using CSR
mEEnm

Row pointers

Column indices n n n
TP [[o [B I) O D

Algorithm 1 Element by element assembly of the stiffness
matrix and the load vector.
for i = 0 to dimRow-1 do
row = rowPtrs[i|
y[i] =0
for j = 0 to rowPtrs[i+1]-row-1 do
y[i] + = wvalues[row + jlxz[colldzs[row + j|]

end for
end for

Naive CUDA Implementation

[0 Assigh one thread to each row
0 Define block size as multiple of warp size, e.g., 128

[0 Can handle max of 128x65535=8388480 rows,
where 65535 is the max number of blocks

int i = blockldx.x*blockSize + threadldx.x;
float rowSum = 0;
int rowPtr = rowPtrs[i];
for (int j = 0; j<rowPtrs[i+1]-rowPtr; j+=1) {
rowSum += values[rowPtr+j] * x[colldxs[rowPtr+ij]];

}
y[i] = rowSum;

Naive CUDA Implementation -
Drawbacks

For large matrices with several
elements per row, the
implementation suffers from a high
cache miss rate since cache can’t hold
all cache lines being used

'hus coalescing/caching is poor for
long rows

If nnz per row have high variance,
warp divergence will occur

Thread Cooperation

[0 Multiple threads can be assigned to work on the
same row

O Cooperating threads act on adjacent elements of
the row; perform multiplication with elements of
vector x; add up their results in shared memory
using reduction

OO0 First thread of the group writes the result to
vectory

O If the number of cooperating threads, coop, is less
than warp size, the synchronization between
cooperating threads is implicit

Analysis

Same cache lines are used by
cooperating threads

Improves coalescing/caching

If the length of the row is not a
multiple of 32, can lead to warp
divergence, and loss in performance

Coop = 4

Narp di

Granularity

[

If a group of cooperating threads act on only row,
then the number of blocks required for entire
matrix may be more than 65535

Thus, more than one row per cooperating group can
be processed

Number of rows processing by a cooperating group
is denoted as repeat

A thread block processes repeat*blockSize/coop
consecutive rows

An algorithm can be parametrized by blockSize,
coop and repeat

Parametrized Algorithm

__global__ void csrmv(float *values, int *rowPtrs,
int *colldxs, float *x, float *y,
int dimRow, int repeat, int coop) {
int i = (repeat*blockldx.x*blockDim.x + threadldx.x)/coop;
int coopldx = threadldx.x%coop;
int tid = threadldx.x:
extern _ shared__ volatile float sdata[);
for (int r = 0; r<repeat; r++) {
float localSum = 0
if (i<dimRow) {
/f do multiplication
int rowPtr = rowPtrslil;
for (int j = coopldx; j<rowPtrs[i+ 1]-rowPtr; j+=coop) {
localSum += values[rowPtr+j] * x[colldxs[rowPtr+]];

}

/{ do reduction in shared mem
sdataltid] = localSum;
for(unsigned int s=coop/2; 5>0; s>>=1){
if (coopldx < s) sdata[tid] += sdata[tid + s];
}
if (coopldx == 0) y[i] = sdata[tid];

i += blockDim.x/coop;

References

Efficient Sparse Matrix-Vector
Multiplication on cache-based GPUs.
Reguly, Giles. InPar 2012.

Motivation

Sparse computations much more
challenging than dense due to
complex data structures and memory
references

Many physical systems produce
sparse matrices

Commonly used computations -
sparse Cholesky factorization

Sparse Cholesky

[0 solve AXx = b;

Most of the research and the base
case are in sparse symmetric positive
definite matrices

A=LL": Ly =b; LXx =vy;
Cholesky factorization introduces
fill-in

Column oriented left-looking
Cholesky

Column Oriented Cheolesky factorization

forg=1,n
fork=1,7—1
fori=j,n {cmod(j,k)}
Qi; = Qij — Gik " ik
@i = /85
fork=34+1, n {cdiviy)}

Qg = Qgifaj;

new nonzeros in factor

Fill

10

10

2

9

2

9

Permutation Matrix or Ordering

Thus ordering to reduce fill or to enhance
numerical stability

Choose permutation matrix P so that
Cholesky factor L" of PAPT has less fill than
L.

Triangular solve:
'y = Pb; L'z=y; x =P’z
The fill can be predicted in advance

Static data structure can be used -
symbolic factorization

Steps

Ordering:
B Find a permutation P of matrix A,
Symbolic factorization:

B Set up a data structure for the Cholesky
factor L of PAPT,

Numerical factorization:
B Decompose PAP! into LL7,

Triangular system solution:
B lLy=Pb;L'z=y; x =Pz

N o o1 A WN

Sparse Matrices and Graph Theory

o o
o
o Q
o O
o O Q
o
@) @] a

N o o A WN

(@) (@) (@)
(@) (@)
(@) (@) (@)
(@) o O
o O
(@) (] (@)
(@) (@)

N OO o1 A WN

1|0 o)
2 o
3|0 o)
4 o
5

6|0)
7 Q

Sparse and Graph

o

&

D

F(A)

Ordering

[he above order of elimination is
“natural”

[he first heuristic is minimum degree
ordering

Simple and effective

But efficiency depends on tie breaking
strategy

Difficult to parallelize!

Minimum degree ordering for the
previous Matrix

o
o

© O o
o O O
o O o
o o o

N oo o1 A W N+

© O o

i & o o
KW

Ordering - {2,4,5,7,3,1,6}
No fill-in ! &

Ordering

Another ordering is nested dissection
(divide-and-conquer)

Find separator S of nodes whose removal
(along with edges) divides the graph into 2
disjoint pieces

Variables in each pieces are numbered

contiguously and variables in S are
numbered last

Leads to bordered block diagonal non-zero
pattern

Can be applied recursively
Can be parallelized using divide-and-

- conquer approach

Nested Dissection Illustration

Nested Dissection Illustration

Numerical Factorization

row-Cholesky column-Cholesky submatrix-Cholesky

used for modification
1 modified
Three forms of Cholesky factonzation.

cmod(j, k): modification of column j by column k, k < j

cdiv(j) : division of column j by a scalar

Algorithms

Sparse column-Cholesky factorization Sparse submatriz-Cholesky factorization
forg=1n fork=1n
for k € Struct(L;,) Cdi‘“'l[k)
cmod(j,) for € Struct(L)

cdiv(_?) cmod(7, k)

Elimination Tree

[(A) has an edge between two

vertices i and j, with i > j, if i = p(j),
i.e., L(i, j) is first non-zero entgy in

the jth column below diag
the parent of j.

onal

@)

©

5
5 ©® @

| IS

®)

3 ®

Parallelization of Sparse Cholesky

Most of the parallel algorithms are
based on elimination trees

Work associated with two disjoint
subtrees can proceed independently

Same steps associated with
sequential sparse factorization

One additional step: assignment of
tasks to processors

Ordering in Parallel — Nested
dissection

Nested dissection can be carried in parallel

Also leads to elimination trees that can be
parallelized during subsequent
factorizations

But parallelization only in the later levels of
dissection

Can be applied to only limited class of
problems

Nested Dissection Algorithms

Use a graph partitioning heuristic to
obtain a small edge separator of the
graph

[ransform the small edge separator
into a small node separator

Number nodes of the separator last
and recursively apply

Kernighan-Lin for ND

Form a random initial partition
Form edge separator by applying K-L
to form partitions P1 and P2

Let V1 in P1 such that nodes in V1
incident on atleast one edge in the
separator set. Similarly V2

V1 U V2 (wide node separator),

V1 or V2 (narrow node separator) by
Gilbert and Zmijewski (1987)

Step 2: Mapping Problems on to
Drocessors

[0 Based on elimination trees

[0 Various strategies to map columns to processors
based on elimination trees.

OO0 Two algorithms:

B Subtree-to-Subcube
B Bin-Pack by Geist and Ng

Naive Strategy

Strategy 2 — Subtree-to-subcube
mapping

Select an appropriate set of P subtrees of
the elimination tree, say TO, T1...

Assign columns corresponding to Ti to Pi

Where two subtrees merge into a single
subtree, their processor sets are merged
together and wrap-mapped onto the
nodes/columns of the separator that begins
at that point.

The root separator is wrap-mapped onto
the set of all processors.

Strategy 2

Strategy 3: Bin-Pack (Geist and
Ng)

O

O
O

O O

Subtree-to-subcube mapping is not good for unbalanced
trees

Try to find disjoint subtrees

Map the subtrees to p bins based on first-fit-decreasing bin-
packing heuristic

B Subtrees are processed in decreasing order of workloads

B A subtree is packed into the current lightest bin

\t/)_/eight imbalance, a — ratio between lightest and heaviest
In

If a >= user-specified tolerance, vy, stop

Else explore the heaviest subtree from the heaviest bin and
split into subtrees. These subtrees are then mapped to p
bins and repacked using bin-packing again

Repeat until a >= y or the largest subtree cannot be split
further

Load balance based on user-specified tolerance

the root of the tree, wrap map.

Parallel Numerical Factorization -
Submatrix Cholesky

Jparse submatriz- Cholesky factorization

ferk=1,n
cdiv(k)
for 7 € Struct(L.z)
cmod(7, k)

Tsub(k) is partitioned into various subtasks Tsub(k,1),...,Tsub(k,P)
where

Tsub(k,p) := {cmod(j,k) | j C Struct(L«,) N mycols(p)}

} Tsub(k)

Definitions

mycols(p) — set of columns owned by p
map[k] — processor containing column k
procs(L«.) = {map[j] | j in Struct(Ls,)?}

Parallel Submatrix Cholesky

for j in mycols(p) do
if j is a leaf node in T(A) do
cdiv(j)
send L,; to the processors in procs(Ly;)
mycols(p) := mycols(p) - {j}

while mycols(p) # 0 do
receive any column of L, say L.,
for j in Struct(L«,) N mycols(p) do
cmod(j, k)
if column j required no more cmod’s do
cdiv(j)
send Ly; to the processors in procs(Ly)
mycols(p) := mycols(p) - {j}
Disadvantages:

1. Communication is not localized

Parallel Numerical Factorization -
Sub column Cholesky

Sparse column-Cholesky factorization

for1 =1, n
Jor k € Struct(L;,)
cmod(7, k)
cdiv(y)

Tcol(j) is partitioned into various subtasks Tcol(j,1),...,Tcol(j,P)
where

Tcol(j,p) aggregates into a single update vector every update

—vector u(j,k) for which k C Struct(L;«) N mycols(p)

Definitions

mycols(p) — set of columns owned by p
map[k] — processor containing column k
procs(Lix) = {map[k] | k in Struct(L;x)}

u(j, k) = scaled column accumulated into
the factor column by cmod(j, k)

Parallel Sub column Cholesky

forj:=1tondo
if j in mycols(p) or Struct(L;«) N mycols(p) # 0 do
u=20
for k in Struct(L;«) N mycols(p) do
u=u+ u(k)
if map[j] # p do
send u to processor g = map[j]
else
incorporate u into the factor column j
while any aggregated update column for column j remains unreceived do
receive in u another aggregated update column for column j
incoprporate u into the factor column j
cdiv(j)

Has uniform and less communication than sub matrix version for
subtree-subcube mapping

A refined version — compute-ahead
fan-in

The previous version can lead to processor
idling due to waiting for the aggregates for
updating column j

Updating column j can be mixed with
compute-ahead tasks:

1. Aggregate u(i, k) fori > j for each
completed column k in Struct(L.«) N
mycols(p)

2. Receive aggregate update column fori > j
and incorporate into factor column i

Sparse Iterative Methods

[terative & Direct methods - Pros
and Cons.

Iterative methods do not give
accurate results.

Convergence cannot be predicted
But absolutely no fills.

Parallel Jacobi, Gauss-Seidel, SOR

~or problems with grid structure (1-
D, 2-D etc.), Jacobi is easily
narallelizable

Gauss-Seidel and SOR need recent
values. Hence ordering of updates
and sequencing among processors

But Gauss-Seidel and SOR can be

parallelized using red-black ordering
or checker board

2D Grid example

Red-Black Ordering

Color alternate nodes in each
dimension red and black

Number red nodes first and then
black nodes

Red nodes can be updated
simultaneously followed by
simultaneous black nodes updates

2D Grid example — Red Black
Ordering

OIn general, reordering can
affect convergence

Graph Coloring

Ingeneral multi-colored graph coloring
Ordering for parallel computing of Gauss-
Seidel and SOR

Graph coloring can also be used for
parallelization of triangular solves

The minimum number of parallel steps in
triangular solve is given by the chromatic
number of symmetric graph

Unknowns corresponding to nodes of same
color are solved in parallel; computation
proceeds in steps

Thus permutation matrix, P based on graph
color ordering

Parallel Triangular Solve based on
Multi-Coloring

0 Unknowns corresponding to the vertices of same color can
be solved in parallel

[0 Thus parallel triangular solve proceeds in steps equal to the
number of colors

0)
)
) @)
))
) o
) O o)
O O o 0 o o
O O o D O O 0 O o

o 0o 0 Q o Q o Q

Original Order New Order

References in Graph Coloring

O

O

O

O

O

M. Luby. A simple parallel algorithm for the maximal
independent set problem. SIAM Journal on Computing.
15(4)1036-1054 (1986)

M.T.Jones, P.E. Plassmann. A parallel graph coloring
heuristic. SIAM journal of scientific computing, 14(3):
654-669, May 1993

L. V. Kale and B. H. Richards and T. D. Allen. Efficient
Parallel Graph Coloring with Prioritization, Lecture Notes
in Computer Science, vol 1068, August 1995, pp 190-
208. Springer-Verlag.

A.H. Gebremedhin, F. Manne, Scalable parallel graph

coloring algorithms, Concurrency: Practice and
Experience 12 (2000) 1131-1146.

A.H. Gebremedhin , 1.G. Lassous , J. Gustedt ,].A. Telle,
Graph coloring on coarse grained multicomputers,
Discrete Applied Mathematics, v.131 n.1, p.179-198, 6
September 2003

References

M.T. Heath, E. Ng, B.W. Peyton. Parallel
Algorithms for Sparse Linear Systems.

SIAM Review. Vol. 33, No. 3, pp. 420-460,
September 1991.

A. George, J.W.H. Liu. The Evolution of the

Minimum Degree Ordering Algorithm. SIAM

Review. Vol. 31, No. 1, pp. 1-19, March
1989.

J. W. H. Liu. Reordering sparse matrices for

parallel elimination. Parallel Computing 11
(1989) 73-91

References

Anshul Gupta, Vipin Kumar. Parallel
algorithms for forward and back
substitution in direct solution of sparse
inear systems. Conference on High
Performance Networking and Computing.
Proceedings of the 1995 ACM/IEEE
conference on Supercomputing (CDROM).

P. Raghavan. Efficient Parallel Triangular

Solution Using Selective Inversion. Parallel

Processing Letters, Vol. 8, No. 1, pp. 29-40,
1998

References

Joseph W. H. Liu. The Multifrontal
Method for Sparse Matrix
Factorization. SIAM Review. Vol. 34,
No. 1, pp. 82-109, March 1992.

Gupta, Karypis and Kumar. Highly
Scalable Parallel Algorithms for
Sparse Matrix Factorization. TPDS.
1997/.

