
Sparse LA

Sathish Vadhiyar



Motivation

 Sparse computations much more 
challenging than dense due to 
complex data structures and memory 
references

 Many physical systems produce 
sparse matrices



Sparse Matrix-Vector 
Multiplication



Cache in GPUs

 Fermi has 16KB/48KB L1 cache per SM, and a 
global 768 KB L2 cache

 Each cache line is 128 bytes, to provide high 
memory bandwidth

 Thus when using 48KB cache, only 
(48KB/128bytes=384) cache lines can be stored

 GPUs execute up to 1536 threads per SM

 If all threads access different cache lines, 384 of 
them will get cache hits, and others will get cache 
miss

 Thus threads in the same block should work on the 
same cache lines



Compressed Sparse Row (CSR) 
Format

 SpMV (Sparse Matrix-Vector 
Multiplication) using CSR



Naïve CUDA Implementation

 Assign one thread to each row

 Define block size as multiple of warp size, e.g., 128

 Can handle max of 128x65535=8388480 rows, 
where 65535 is the max number of blocks



Naïve CUDA Implementation -
Drawbacks

 For large matrices with several 
elements per row, the 
implementation suffers from a high 
cache miss rate since cache can’t hold 
all cache lines being used

 Thus coalescing/caching is poor for 
long rows

 If nnz per row have high variance, 
warp divergence will occur



Thread Cooperation

 Multiple threads can be assigned to work on the 
same row

 Cooperating threads act on adjacent elements of 
the row; perform multiplication with elements of 
vector x; add up their results in shared memory 
using reduction

 First thread of the group writes the result to 
vector y

 If the number of cooperating threads, coop, is less 
than warp size, the synchronization between 
cooperating threads is implicit



Analysis

 Same cache lines are used by 
cooperating threads

 Improves coalescing/caching

 If the length of the row is not a 
multiple of 32, can lead to warp 
divergence, and loss in performance

Coop = 4

Coalesced access; Good caching Warp divergence



Granularity

 If a group of cooperating threads act on only row, 
then the number of blocks required for entire 
matrix may be more than 65535

 Thus, more than one row per cooperating group can 
be processed

 Number of rows processing by a cooperating group 
is denoted as repeat

 A thread block processes repeat*blockSize/coop 
consecutive rows

 An algorithm can be parametrized by blockSize, 
coop and repeat



Parametrized Algorithm



References

 Efficient Sparse Matrix-Vector 
Multiplication on cache-based GPUs. 
Reguly, Giles. InPar 2012.



Motivation

 Sparse computations much more 
challenging than dense due to 
complex data structures and memory 
references

 Many physical systems produce 
sparse matrices

 Commonly used computations –
sparse Cholesky factorization



Sparse Cholesky

 To solve Ax = b;

 Most of the research and the base 
case are in sparse symmetric positive 
definite matrices

 A = LLT; Ly = b; LTx = y;

 Cholesky factorization introduces     
fill-in



Column oriented left-looking 
Cholesky



Fill-in

10

1
3

2

4

5

6

7

8

9

10

1
3

2

4

5

6

7

8

9

Fill: new nonzeros in factor



Permutation Matrix or Ordering

 Thus ordering to reduce fill or to enhance 
numerical stability

 Choose permutation matrix P so that 
Cholesky factor L’ of PAPT has less fill than 
L.

 Triangular solve:

L’y = Pb; L’Tz = y; x = PTz

 The fill can be predicted in advance

 Static data structure can be used –
symbolic factorization



Steps

 Ordering:
 Find a permutation P of matrix A, 

 Symbolic factorization:
 Set up a data structure for the Cholesky 

factor L of PAPT, 

 Numerical factorization:
 Decompose PAPT into LLT, 

 Triangular system solution:
 Ly = Pb; LTz = y; x = PTz.



Sparse Matrices and Graph Theory

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

3

4

5

6

7

4

5

6

7

G(A)



Sparse and Graph

1

2

3

4

5

6

7

5

6

7

1

2

3

4

5

6

7

6

7

1

2

3

4

5

6

7

7

F(A)



Ordering

 The above order of elimination is 
“natural”

 The first heuristic is minimum degree 
ordering

 Simple and effective

 But efficiency depends on tie breaking 
strategy

 Difficult to parallelize!



Minimum degree ordering for the 
previous Matrix

1

2

3

4

5

6

7

Ordering – {2,4,5,7,3,1,6}

No fill-in !

6

1

5

2

3

7

4



Ordering

 Another ordering is nested dissection 
(divide-and-conquer)

 Find separator S of nodes whose removal 
(along with edges) divides the graph into 2 
disjoint pieces

 Variables in each pieces are numbered 
contiguously and variables in S are 
numbered last

 Leads to bordered block diagonal non-zero 
pattern

 Can be applied recursively
 Can be parallelized using divide-and-

conquer approach



Nested Dissection Illustration

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

S



Nested Dissection Illustration

1

3

5

7

9

2

4

6

8

10

21

22

23

24

25

11

13

15

17

19

12

14

16

18

20

S



Numerical Factorization

cmod(j, k): modification of column j by column k, k < j

cdiv(j) : division of column j by a scalar



Algorithms



Elimination Tree

 T(A) has an edge between two 
vertices i and j, with i > j, if i = p(j), 
i.e., L(i, j) is first non-zero entry in 
the jth column below diagonal. i is 
the parent of j.

1

3

2

45

6

7

8

9

10



Parallelization of Sparse Cholesky

 Most of the parallel algorithms are 
based on elimination trees

 Work associated with two disjoint 
subtrees can proceed independently

 Same steps associated with 
sequential sparse factorization

 One additional step: assignment of 
tasks to processors



Ordering in Parallel – Nested 
dissection

 Nested dissection can be carried in parallel

 Also leads to elimination trees that can be 
parallelized during subsequent 
factorizations

 But parallelization only in the later levels of 
dissection

 Can be applied to only limited class of 
problems



Nested Dissection Algorithms

 Use a graph partitioning heuristic to 
obtain a small edge separator of the 
graph 

 Transform the small edge separator 
into a small node separator

 Number nodes of the separator last 
and recursively apply



Kernighan-Lin for ND

 Form a random initial partition

 Form edge separator by applying K-L 
to form partitions P1 and P2

 Let V1 in P1 such that nodes in V1 
incident on atleast one edge in the 
separator set. Similarly V2

 V1 U V2 (wide node separator),

 V1 or V2 (narrow node separator) by 
Gilbert and Zmijewski (1987)



Step 2: Mapping Problems on to 
processors

 Based on elimination trees
 Various strategies to map columns to processors 

based on elimination trees.
 Two algorithms:

 Subtree-to-Subcube
 Bin-Pack by Geist and Ng



Naïve Strategy
2

1

0

3

2

1

0 0

3 3

2 2

1 1

0 0 0 0

1 1

0 0 0 0



Strategy 2 – Subtree-to-subcube 
mapping

 Select an appropriate set of P subtrees of 
the elimination tree, say T0, T1…

 Assign columns corresponding to Ti to Pi

 Where two subtrees merge into a single 
subtree, their processor sets are merged 
together and wrap-mapped onto the 
nodes/columns of the separator that begins 
at that point.

 The root separator is wrap-mapped onto 
the set of all processors.



Strategy 2
0

1

2

3

0

1

0 2

1 3

0 2

0 1

0 0 1 1

2 3

2 2 3 3



Strategy 3: Bin-Pack (Geist and 
Ng)

 Subtree-to-subcube mapping is not good for unbalanced 
trees

 Try to find disjoint subtrees
 Map the subtrees to p bins based on first-fit-decreasing bin-

packing heuristic
 Subtrees are processed in decreasing order of workloads
 A subtree is packed into the current lightest bin

 Weight imbalance, α – ratio between lightest and heaviest 
bin

 If α >= user-specified tolerance, γ, stop
 Else explore the heaviest subtree from the heaviest bin and 

split into subtrees. These subtrees are then mapped to p 
bins and repacked using bin-packing again

 Repeat until α >= γ or the largest subtree cannot be split 
further

 Load balance based on user-specified tolerance
 For the remaining nodes from the roots of the subtrees to 

the root of the tree, wrap map.



Parallel Numerical Factorization –
Submatrix Cholesky

Tsub(k)

Tsub(k) is partitioned into various subtasks Tsub(k,1),…,Tsub(k,P) 
where

Tsub(k,p) := {cmod(j,k) | j C Struct(L*k) ∩ mycols(p)}



Definitions

 mycols(p) – set of columns owned by p

 map[k] – processor containing column k

 procs(L*k) = {map[j] | j in Struct(L*k)}



Parallel Submatrix Cholesky

for j in mycols(p) do
if j is a leaf node in T(A) do

cdiv(j)
send L*j to the processors in procs(L*j)
mycols(p) := mycols(p) – {j}

while mycols(p) ≠ 0 do
receive any column of L, say L*k

for j in Struct(L*k) ∩ mycols(p) do

cmod(j, k)
if column j required no more cmod’s do

cdiv(j)
send L*j to the processors in procs(L*j)
mycols(p) := mycols(p) – {j}

Disadvantages:

1. Communication is not localized



Parallel Numerical Factorization –
Sub column Cholesky

Tcol(j) is partitioned into various subtasks Tcol(j,1),…,Tcol(j,P) 
where

Tcol(j,p) aggregates into a single update vector every update 
vector u(j,k) for which k C Struct(Lj*) ∩ mycols(p)



Definitions

 mycols(p) – set of columns owned by p

 map[k] – processor containing column k

 procs(Lj*) = {map[k] | k in Struct(Lj*)}

 u(j, k) – scaled column accumulated into 
the factor column by cmod(j, k)



Parallel Sub column Cholesky

for j:= 1 to n do
if j in mycols(p) or Struct(Lj*) ∩ mycols(p) ≠ 0 do

u = 0
for k in Struct(Lj*) ∩ mycols(p) do

u = u + u(j,k)
if map[j] ≠ p do

send u to processor q = map[j]
else

incorporate u into the factor column j
while any aggregated update column for column j remains unreceived do

receive in u another aggregated update column for column j
incoprporate u into the factor column j

cdiv(j)

Has uniform and less communication than sub matrix version for 
subtree-subcube mapping



A refined version – compute-ahead 
fan-in

 The previous version can lead to processor 
idling due to waiting for the aggregates for 
updating column j

 Updating column j can be mixed with 
compute-ahead tasks:

1. Aggregate u(i, k) for i > j for each 
completed column k in Struct(Li*) ∩
mycols(p)

2. Receive aggregate update column for i > j 
and incorporate into factor column i



Sparse Iterative Methods



Iterative & Direct methods – Pros 
and Cons.

 Iterative methods do not give 
accurate results.

 Convergence cannot be predicted

 But absolutely no fills.



Parallel Jacobi, Gauss-Seidel, SOR

 For problems with grid structure (1-
D, 2-D etc.), Jacobi is easily 
parallelizable

 Gauss-Seidel and SOR need recent 
values. Hence ordering of updates 
and sequencing among processors

 But Gauss-Seidel and SOR can be 
parallelized using red-black ordering 
or checker board



2D Grid example

13

9

5

1

14

10

6

2

15

11

7

3

16

12

8

4



Red-Black Ordering

 Color alternate nodes in each 
dimension red and black

 Number red nodes first and then 
black nodes

 Red nodes can be updated 
simultaneously followed by 
simultaneous black nodes updates



2D Grid example – Red Black 
Ordering

15

5

11

1

7

13

3

9

16

6

12

2

8

14

4

10

In general, reordering can 
affect convergence



Graph Coloring
 In general multi-colored graph coloring 

Ordering for parallel computing of Gauss-
Seidel and SOR

 Graph coloring can also be used for 
parallelization of triangular solves

 The minimum number of parallel steps in 
triangular solve is given by the chromatic 
number of symmetric graph

 Unknowns corresponding to nodes of same 
color are solved in parallel; computation 
proceeds in steps

 Thus permutation matrix, P based on graph 
color ordering



Parallel Triangular Solve based on 
Multi-Coloring

 Unknowns corresponding to the vertices of same color can 
be solved in parallel

 Thus parallel triangular solve proceeds in steps equal to the 
number of colors

1, 1

2, 7
3, 2

4, 3 6, 8

7, 9

5, 4

8, 5
9, 6

10, 10

Original Order New Order



References in Graph Coloring

 M. Luby. A simple parallel algorithm for the maximal 
independent set problem. SIAM Journal on Computing. 
15(4)1036-1054 (1986)

 M.T.Jones, P.E. Plassmann. A parallel graph coloring 
heuristic. SIAM journal of scientific computing, 14(3): 
654-669, May 1993

 L. V. Kale and B. H. Richards and T. D. Allen. Efficient 
Parallel Graph Coloring with Prioritization, Lecture Notes 
in Computer Science, vol 1068, August 1995, pp 190-
208. Springer-Verlag.

 A.H. Gebremedhin, F. Manne, Scalable parallel graph 
coloring algorithms, Concurrency: Practice and 
Experience 12 (2000) 1131-1146.

 A.H. Gebremedhin , I.G. Lassous , J. Gustedt , J.A. Telle, 
Graph coloring on coarse grained multicomputers, 
Discrete Applied Mathematics, v.131 n.1, p.179-198, 6 
September 2003 



References

 M.T. Heath, E. Ng, B.W. Peyton. Parallel 
Algorithms for Sparse Linear Systems. 
SIAM Review. Vol. 33, No. 3, pp. 420-460, 
September 1991.

 A. George, J.W.H. Liu. The Evolution of the 
Minimum Degree Ordering Algorithm. SIAM 
Review. Vol. 31, No. 1, pp. 1-19, March 
1989.

 J. W. H. Liu. Reordering sparse matrices for 
parallel elimination. Parallel Computing 11 
(1989) 73-91



References

 Anshul Gupta, Vipin Kumar. Parallel 
algorithms for forward and back 
substitution in direct solution of sparse 
linear systems. Conference on High 
Performance Networking and Computing. 
Proceedings of the 1995 ACM/IEEE 
conference on Supercomputing (CDROM).

 P. Raghavan. Efficient Parallel Triangular 
Solution Using Selective Inversion. Parallel 
Processing Letters, Vol. 8, No. 1, pp. 29-40, 
1998 



References

 Joseph W. H. Liu. The Multifrontal 
Method for Sparse Matrix 
Factorization. SIAM Review. Vol. 34, 
No. 1, pp. 82-109, March 1992.

 Gupta, Karypis and Kumar. Highly 
Scalable Parallel Algorithms for 
Sparse Matrix Factorization. TPDS. 
1997.


