
Sparse LA

Sathish Vadhiyar

Motivation

 Sparse computations much more
challenging than dense due to
complex data structures and memory
references

 Many physical systems produce
sparse matrices

Sparse Matrix-Vector
Multiplication

Cache in GPUs

 Fermi has 16KB/48KB L1 cache per SM, and a
global 768 KB L2 cache

 Each cache line is 128 bytes, to provide high
memory bandwidth

 Thus when using 48KB cache, only
(48KB/128bytes=384) cache lines can be stored

 GPUs execute up to 1536 threads per SM

 If all threads access different cache lines, 384 of
them will get cache hits, and others will get cache
miss

 Thus threads in the same block should work on the
same cache lines

Compressed Sparse Row (CSR)
Format

 SpMV (Sparse Matrix-Vector
Multiplication) using CSR

Naïve CUDA Implementation

 Assign one thread to each row

 Define block size as multiple of warp size, e.g., 128

 Can handle max of 128x65535=8388480 rows,
where 65535 is the max number of blocks

Naïve CUDA Implementation -
Drawbacks

 For large matrices with several
elements per row, the
implementation suffers from a high
cache miss rate since cache can’t hold
all cache lines being used

 Thus coalescing/caching is poor for
long rows

 If nnz per row have high variance,
warp divergence will occur

Thread Cooperation

 Multiple threads can be assigned to work on the
same row

 Cooperating threads act on adjacent elements of
the row; perform multiplication with elements of
vector x; add up their results in shared memory
using reduction

 First thread of the group writes the result to
vector y

 If the number of cooperating threads, coop, is less
than warp size, the synchronization between
cooperating threads is implicit

Analysis

 Same cache lines are used by
cooperating threads

 Improves coalescing/caching

 If the length of the row is not a
multiple of 32, can lead to warp
divergence, and loss in performance

Coop = 4

Coalesced access; Good caching Warp divergence

Granularity

 If a group of cooperating threads act on only row,
then the number of blocks required for entire
matrix may be more than 65535

 Thus, more than one row per cooperating group can
be processed

 Number of rows processing by a cooperating group
is denoted as repeat

 A thread block processes repeat*blockSize/coop
consecutive rows

 An algorithm can be parametrized by blockSize,
coop and repeat

Parametrized Algorithm

References

 Efficient Sparse Matrix-Vector
Multiplication on cache-based GPUs.
Reguly, Giles. InPar 2012.

Motivation

 Sparse computations much more
challenging than dense due to
complex data structures and memory
references

 Many physical systems produce
sparse matrices

 Commonly used computations –
sparse Cholesky factorization

Sparse Cholesky

 To solve Ax = b;

 Most of the research and the base
case are in sparse symmetric positive
definite matrices

 A = LLT; Ly = b; LTx = y;

 Cholesky factorization introduces
fill-in

Column oriented left-looking
Cholesky

Fill-in

10

1
3

2

4

5

6

7

8

9

10

1
3

2

4

5

6

7

8

9

Fill: new nonzeros in factor

Permutation Matrix or Ordering

 Thus ordering to reduce fill or to enhance
numerical stability

 Choose permutation matrix P so that
Cholesky factor L’ of PAPT has less fill than
L.

 Triangular solve:

L’y = Pb; L’Tz = y; x = PTz

 The fill can be predicted in advance

 Static data structure can be used –
symbolic factorization

Steps

 Ordering:
 Find a permutation P of matrix A,

 Symbolic factorization:
 Set up a data structure for the Cholesky

factor L of PAPT,

 Numerical factorization:
 Decompose PAPT into LLT,

 Triangular system solution:
 Ly = Pb; LTz = y; x = PTz.

Sparse Matrices and Graph Theory

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

3

4

5

6

7

4

5

6

7

G(A)

Sparse and Graph

1

2

3

4

5

6

7

5

6

7

1

2

3

4

5

6

7

6

7

1

2

3

4

5

6

7

7

F(A)

Ordering

 The above order of elimination is
“natural”

 The first heuristic is minimum degree
ordering

 Simple and effective

 But efficiency depends on tie breaking
strategy

 Difficult to parallelize!

Minimum degree ordering for the
previous Matrix

1

2

3

4

5

6

7

Ordering – {2,4,5,7,3,1,6}

No fill-in !

6

1

5

2

3

7

4

Ordering

 Another ordering is nested dissection
(divide-and-conquer)

 Find separator S of nodes whose removal
(along with edges) divides the graph into 2
disjoint pieces

 Variables in each pieces are numbered
contiguously and variables in S are
numbered last

 Leads to bordered block diagonal non-zero
pattern

 Can be applied recursively
 Can be parallelized using divide-and-

conquer approach

Nested Dissection Illustration

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

S

Nested Dissection Illustration

1

3

5

7

9

2

4

6

8

10

21

22

23

24

25

11

13

15

17

19

12

14

16

18

20

S

Numerical Factorization

cmod(j, k): modification of column j by column k, k < j

cdiv(j) : division of column j by a scalar

Algorithms

Elimination Tree

 T(A) has an edge between two
vertices i and j, with i > j, if i = p(j),
i.e., L(i, j) is first non-zero entry in
the jth column below diagonal. i is
the parent of j.

1

3

2

45

6

7

8

9

10

Parallelization of Sparse Cholesky

 Most of the parallel algorithms are
based on elimination trees

 Work associated with two disjoint
subtrees can proceed independently

 Same steps associated with
sequential sparse factorization

 One additional step: assignment of
tasks to processors

Ordering in Parallel – Nested
dissection

 Nested dissection can be carried in parallel

 Also leads to elimination trees that can be
parallelized during subsequent
factorizations

 But parallelization only in the later levels of
dissection

 Can be applied to only limited class of
problems

Nested Dissection Algorithms

 Use a graph partitioning heuristic to
obtain a small edge separator of the
graph

 Transform the small edge separator
into a small node separator

 Number nodes of the separator last
and recursively apply

Kernighan-Lin for ND

 Form a random initial partition

 Form edge separator by applying K-L
to form partitions P1 and P2

 Let V1 in P1 such that nodes in V1
incident on atleast one edge in the
separator set. Similarly V2

 V1 U V2 (wide node separator),

 V1 or V2 (narrow node separator) by
Gilbert and Zmijewski (1987)

Step 2: Mapping Problems on to
processors

 Based on elimination trees
 Various strategies to map columns to processors

based on elimination trees.
 Two algorithms:

 Subtree-to-Subcube
 Bin-Pack by Geist and Ng

Naïve Strategy
2

1

0

3

2

1

0 0

3 3

2 2

1 1

0 0 0 0

1 1

0 0 0 0

Strategy 2 – Subtree-to-subcube
mapping

 Select an appropriate set of P subtrees of
the elimination tree, say T0, T1…

 Assign columns corresponding to Ti to Pi

 Where two subtrees merge into a single
subtree, their processor sets are merged
together and wrap-mapped onto the
nodes/columns of the separator that begins
at that point.

 The root separator is wrap-mapped onto
the set of all processors.

Strategy 2
0

1

2

3

0

1

0 2

1 3

0 2

0 1

0 0 1 1

2 3

2 2 3 3

Strategy 3: Bin-Pack (Geist and
Ng)

 Subtree-to-subcube mapping is not good for unbalanced
trees

 Try to find disjoint subtrees
 Map the subtrees to p bins based on first-fit-decreasing bin-

packing heuristic
 Subtrees are processed in decreasing order of workloads
 A subtree is packed into the current lightest bin

 Weight imbalance, α – ratio between lightest and heaviest
bin

 If α >= user-specified tolerance, γ, stop
 Else explore the heaviest subtree from the heaviest bin and

split into subtrees. These subtrees are then mapped to p
bins and repacked using bin-packing again

 Repeat until α >= γ or the largest subtree cannot be split
further

 Load balance based on user-specified tolerance
 For the remaining nodes from the roots of the subtrees to

the root of the tree, wrap map.

Parallel Numerical Factorization –
Submatrix Cholesky

Tsub(k)

Tsub(k) is partitioned into various subtasks Tsub(k,1),…,Tsub(k,P)
where

Tsub(k,p) := {cmod(j,k) | j C Struct(L*k) ∩ mycols(p)}

Definitions

 mycols(p) – set of columns owned by p

 map[k] – processor containing column k

 procs(L*k) = {map[j] | j in Struct(L*k)}

Parallel Submatrix Cholesky

for j in mycols(p) do
if j is a leaf node in T(A) do

cdiv(j)
send L*j to the processors in procs(L*j)
mycols(p) := mycols(p) – {j}

while mycols(p) ≠ 0 do
receive any column of L, say L*k

for j in Struct(L*k) ∩ mycols(p) do

cmod(j, k)
if column j required no more cmod’s do

cdiv(j)
send L*j to the processors in procs(L*j)
mycols(p) := mycols(p) – {j}

Disadvantages:

1. Communication is not localized

Parallel Numerical Factorization –
Sub column Cholesky

Tcol(j) is partitioned into various subtasks Tcol(j,1),…,Tcol(j,P)
where

Tcol(j,p) aggregates into a single update vector every update
vector u(j,k) for which k C Struct(Lj*) ∩ mycols(p)

Definitions

 mycols(p) – set of columns owned by p

 map[k] – processor containing column k

 procs(Lj*) = {map[k] | k in Struct(Lj*)}

 u(j, k) – scaled column accumulated into
the factor column by cmod(j, k)

Parallel Sub column Cholesky

for j:= 1 to n do
if j in mycols(p) or Struct(Lj*) ∩ mycols(p) ≠ 0 do

u = 0
for k in Struct(Lj*) ∩ mycols(p) do

u = u + u(j,k)
if map[j] ≠ p do

send u to processor q = map[j]
else

incorporate u into the factor column j
while any aggregated update column for column j remains unreceived do

receive in u another aggregated update column for column j
incoprporate u into the factor column j

cdiv(j)

Has uniform and less communication than sub matrix version for
subtree-subcube mapping

A refined version – compute-ahead
fan-in

 The previous version can lead to processor
idling due to waiting for the aggregates for
updating column j

 Updating column j can be mixed with
compute-ahead tasks:

1. Aggregate u(i, k) for i > j for each
completed column k in Struct(Li*) ∩
mycols(p)

2. Receive aggregate update column for i > j
and incorporate into factor column i

Sparse Iterative Methods

Iterative & Direct methods – Pros
and Cons.

 Iterative methods do not give
accurate results.

 Convergence cannot be predicted

 But absolutely no fills.

Parallel Jacobi, Gauss-Seidel, SOR

 For problems with grid structure (1-
D, 2-D etc.), Jacobi is easily
parallelizable

 Gauss-Seidel and SOR need recent
values. Hence ordering of updates
and sequencing among processors

 But Gauss-Seidel and SOR can be
parallelized using red-black ordering
or checker board

2D Grid example

13

9

5

1

14

10

6

2

15

11

7

3

16

12

8

4

Red-Black Ordering

 Color alternate nodes in each
dimension red and black

 Number red nodes first and then
black nodes

 Red nodes can be updated
simultaneously followed by
simultaneous black nodes updates

2D Grid example – Red Black
Ordering

15

5

11

1

7

13

3

9

16

6

12

2

8

14

4

10

In general, reordering can
affect convergence

Graph Coloring
 In general multi-colored graph coloring

Ordering for parallel computing of Gauss-
Seidel and SOR

 Graph coloring can also be used for
parallelization of triangular solves

 The minimum number of parallel steps in
triangular solve is given by the chromatic
number of symmetric graph

 Unknowns corresponding to nodes of same
color are solved in parallel; computation
proceeds in steps

 Thus permutation matrix, P based on graph
color ordering

Parallel Triangular Solve based on
Multi-Coloring

 Unknowns corresponding to the vertices of same color can
be solved in parallel

 Thus parallel triangular solve proceeds in steps equal to the
number of colors

1, 1

2, 7
3, 2

4, 3 6, 8

7, 9

5, 4

8, 5
9, 6

10, 10

Original Order New Order

References in Graph Coloring

 M. Luby. A simple parallel algorithm for the maximal
independent set problem. SIAM Journal on Computing.
15(4)1036-1054 (1986)

 M.T.Jones, P.E. Plassmann. A parallel graph coloring
heuristic. SIAM journal of scientific computing, 14(3):
654-669, May 1993

 L. V. Kale and B. H. Richards and T. D. Allen. Efficient
Parallel Graph Coloring with Prioritization, Lecture Notes
in Computer Science, vol 1068, August 1995, pp 190-
208. Springer-Verlag.

 A.H. Gebremedhin, F. Manne, Scalable parallel graph
coloring algorithms, Concurrency: Practice and
Experience 12 (2000) 1131-1146.

 A.H. Gebremedhin , I.G. Lassous , J. Gustedt , J.A. Telle,
Graph coloring on coarse grained multicomputers,
Discrete Applied Mathematics, v.131 n.1, p.179-198, 6
September 2003

References

 M.T. Heath, E. Ng, B.W. Peyton. Parallel
Algorithms for Sparse Linear Systems.
SIAM Review. Vol. 33, No. 3, pp. 420-460,
September 1991.

 A. George, J.W.H. Liu. The Evolution of the
Minimum Degree Ordering Algorithm. SIAM
Review. Vol. 31, No. 1, pp. 1-19, March
1989.

 J. W. H. Liu. Reordering sparse matrices for
parallel elimination. Parallel Computing 11
(1989) 73-91

References

 Anshul Gupta, Vipin Kumar. Parallel
algorithms for forward and back
substitution in direct solution of sparse
linear systems. Conference on High
Performance Networking and Computing.
Proceedings of the 1995 ACM/IEEE
conference on Supercomputing (CDROM).

 P. Raghavan. Efficient Parallel Triangular
Solution Using Selective Inversion. Parallel
Processing Letters, Vol. 8, No. 1, pp. 29-40,
1998

References

 Joseph W. H. Liu. The Multifrontal
Method for Sparse Matrix
Factorization. SIAM Review. Vol. 34,
No. 1, pp. 82-109, March 1992.

 Gupta, Karypis and Kumar. Highly
Scalable Parallel Algorithms for
Sparse Matrix Factorization. TPDS.
1997.

