Journal Publications
- R. Behera, D. Gerontitis, P. Stanimirovic, V. Katsikis, Y. Shi, Xinwei Cao. An Efficient Zeroing Neural Network for Solving Time-Varying Nonlinear Equations. Neural Computing and Applications (2023). https://doi.org/10.1007/s00521-023-08621-x
- B. Sitha; J. K. Sahoo; R. Behera; P. S. Stanimirovic; A. Stupina. Generalized core-EP inverse for square matrices. Computational and Applied Mathematics (2023). https://www.springer.com/journal/40314
- D. Gerontitis, R. Behera, Y. Shi, P. S. Stanimirovic. A Robust Noise Tolerant Zeroing Neural Network for Solving Time-Varying Linear Matrix Equations. Neurocomputing (2022) https://doi.org/10.1016/j.neucom.2022.08.036
- D. Gerontitis, R. Behera, P. Tzekis, P. Stanimirovic. A Family of Varying-Parameter Finite-Time Recurrent Neural Networks for Time-Varying Sylvester Equation and its Application. Journal of Computational and Applied Mathematics.
403, (2022), 113826. https://doi.org/10.1016/j.cam.2021.113826
- R. Behera, J. K. Sahoo, R. N. Mohapatra, and M. Z. Nashed. Computation of Generalized Inverses of Tensors via t-Product. Numerical Linear Algebra with Applications (2021). https://doi.org/10.1002/nla.2416
- R. Behera, G. Maharana, J. K. Sahoo, P. S. Stanimirovic. Characterizations of the Weighted Core-EP Inverses. Bulletin of the Iranian Mathematical Society (2022). https://doi.org/10.1007/s41980-022-00715-x
- S. K. Panda; J. K. Sahoo; R. Behera; P. S. Stanimirovic; D. Mosic; A. A. Stupina. The CEPGD-inverse for square matrices. Bulletin of the Iranian Mathematical Society (2023). https://doi.org/10.1007/s41980-022-00715-x
- S. Das, J. K. Sahoo, and R. Behera. Further results on weighted core inverse in a ring. Linear and Multilinear Algebra. 2022. https://doi.org/10.1080/03081087.2022.2128023
- P. Stanimirovic, D. Gerontitis, P. Tzekis R. Behera, J. K. Sahoo. Simulation of Varying Parameter Recurrent Neural Network with application to matrix inversion. Mathematics and Computers in Simulation (2021). https://doi.org/10.1016/j.matcom.2021.01.018
- J.K. Sahoo, P. Boggarapu, R. Behera and M. Z. Nashed.
GD1 inverse and 1GD inverse for bounded operators on Banach spaces. accepted in Computational and Applied Mathematics (June 2023)
-
P. S. Stanimirovic, J. R. Sendra, R. Behera, J. K. Sahoo, D. Mosic; J. Sendra, A. Lastra. Computing tensor generalized inverses via specialization and rationalization. Revista de la Real Academia de Ciencias Exactas, FĂsicas y Naturales. Serie A. Matematicas. https://doi.org/10.1007/s13398-021-01057-9
-
D. Mosic, P. S. Stanimirovic, J. K. Sahoo, R. Behera, and V. N. Katsikis. One-sided weighted outer inverses of tensors. Journal of Computational and Applied Mathematics (2021) 113293, https://doi.org/10.1016/j.cam.2020.113293
-
D. Gerontitis, R. Behera, J. K. Sahoo, P. Stanimirovic. Improved finite-time zeroing neural network for time-varying division. Studies in Applied Mathematics, 2021; 146: 526-549. https://doi.org/10.1111/sapm.12354
-
R. Behera, G. Maharana, and J. K. Sahoo Further results on weighted core-EP inverse of matrices. Results in Mathematics, 75, 174 (2020).
- B. Sitha, J. K. Sahoo, and R. Behera.
Characterization of Weighted (b, c) Inverse of an Element in a Ring. FILOMAT 36, 14 (2022)
-
R. Behera, D. Mosic, J. K. Sahoo, and P. S. Stanimirovic. Weighted Inner Inverse for Rectangular Matrices, Quaestiones Mathematicae, (2020), https://doi.org/10.2989/16073606.2020.1836688
-
R. Behera, S. Maji, and R. N. Mohapatra. Weighted Moore-Penrose inverses of arbitrary-order tensors. Computational and Applied Mathematics. 39, 284, (2020), https://doi.org/10.1007/s40314-020-01328-y
-
R. Behera, A. K. Nandi, and J. K. Sahoo, Further results on the Drazin inverse of even-order tensors. Numerical Linear Algebra with Applications (2020) https://doi.org/10.1002/nla.2317
-
J. K. Sahoo, R. Behera, P. S. Stanimirovic and V. N. Katsikis. Computation of outer inverses of tensors using the QR decomposition. Computational and Applied Mathematics. (2020) https://doi.org/10.1007/s40314-020-01225-4
-
R. Behera and J. K. Sahoo, Generalized Inverses of Boolean Tensors via Einstein Product, Linear and Multilinear Algebra (2020), https://doi.org/10.1080/03081087.2020.1737630
-
J. K. Sahoo and R. Behera, Reverse-order law for core inverse of tensors. Computational and Applied Mathematics, 39(97), (2020).
-
J. K. Sahoo, R. Behera, P. S. Stanimirovic, V. N. Katsikis, and H. Ma. Core and Core-EP Inverses of Tensors. Computational and Applied Mathematics, (2020). https://doi.org/10.1007/s40314-019-0983-5
-
K. Panigrahy, R. Behera, and D. Mishra, Reverse order law for the Moore-Penrose inverses of tensors, Linear and Multilinear Algebra, 68(2), 2020, 246-264
-
R. Behera, S. Meignen, and T. Oberlin, Theoretical analysis of the second-order synchrosqueezing transform, Applied and Computational Harmonic Analysis, 45 (2018) 379-404.
-
R. Maulik, O. San, and R. Behera, An adaptive multilevel wavelet framework for scale-selective WENO reconstruction schemes, International Journal for Numerical Methods in Fluids, 87(5) (2018) 239-269.
-
R. Behera, and M. Mehra, An adaptive wavelet collocation method for solution of the convection dominated problem on the sphere, International Journal of Computational Methods, 15(1) (2018) 1850080-1850098.
-
R. Behera and M. Mehra, Approximation of the differential operators on an adaptive spherical geodesic grid using spherical wavelet, Mathematics and Computers in Simulation, 132 (2017) 120-138.
-
R. Behera, and D. Mishra, Further results on generalized inverses of tensors via Einstein product, Linear and Multilinear Algebra. 65(8) (2017) 1662-1682.
-
R. Behera, M. Mehra and N. K. R. Kevlahan, Multilevel Approximation of the Gradient Operator on an Adaptive Spherical Geodesic Grid, Advances in Computational Mathematics, 41(3) (2015) 663-689.
-
R. Behera and M. Mehra, A Dynamic Adaptive Wavelet Method for Solution of the Schrodinger Equation, Journal of Multiscale Modelling, 06 (1) (2015) 1450001-1430023.
-
R. Behera and M. Mehra, Integration of Barotropic Vorticity Equation Over Spherical Geodesic Grid using Multilevel Adaptive Wavelet Collocation Method, Applied Mathematical Modelling, 37 (2013) 5215-5226.
- R. Behera and M. Mehra, Approximate solution of Modified Camassa-Holm and Degasperis-Procesi Equations using Wavelet optimized finite difference method, Int. J. Wavelets Multiresolut. Inf. Process.11 (2013) 1350019.
Submitted or Ready to Submit
- R. Behera, R. R. Khilare, D. Gerontitis, P. Stanimirovic. Recurrent neural network for time varying tensor equations and its applications.
- B. Sitha, R. Behera, J. K. Sahoo, R. N. Mohapatra, and P. S. Stanimirovic. Characterizations of Weighted Generalized Inverses.
- R. Behera, J. K. Sahoo, R. N. Mohapatra, S. Das, S. K. Prajapati. Results on weak core inverse and central week core inverse.
- S. Santra, R. Behera. A novel higher-order numerical method for parabolic integro-fractional differential equations based on wavelets and $L2-1_\sigma$ scheme.
- S. Santra, R. Behera. Existence and uniqueness of solutions of multidimensional wavelet-based numerical methods for a class of higher-order integro-fractional differential equations.
- R. Behera, J. K. Sahoo, P. S. Stanimirovic, A. Stupina. Computing Tensor Generalized bilateral inverses.
- R. Behera, J. K. Sahoo, and Y. Wei, Computation of outer inverse of tensors based on $t$-product.
- R. Behera, K. Panigrahy, J. K. Sahoo, R. N. Mohapatra, and M. Z. Nashed, Computing outer inverses of tensors using QDR factorization.
Conferences Proceedings