DS256: Scalable Systems for Data Science (Jan, 2017)

Department of Computational and Data Sciences

Scalable Systems for Data Science

  • Instructors: Yogesh Simmhan (email)
  • Course number: DS256
  • Credits: 3:1
  • Semester: Jan, 2017
  • Lecture: Tue/Thu 330-5PM
  • Room: CDS 202
  • Pre-requisites: Data Structures, Programming and Algorithm concepts. Programming experience required, preferably in Java.
  • First class on Thu, Jan 5 at 330pm at CDS202
  • Register for Course Online using IISc CourseReg


This course will teach the fundamental Systems aspects of designing and using Big Data platforms, which are a specialization of scalable systems for data science applications. This course will address three facets of these platforms.

  • The design of distributed program models and abstractions, such as MapReduce, Dataflow and Vertex-centric models, for processing volume, velocity and linked datasets, and for storing and querying over NoSQL datasets.
  • The approaches and design patterns to translate existing data-intensive algorithms and analytics into these distributed programming abstractions.
  • Distributed software architectures, runtime and storage strategies used by Big Data platforms such as Apache Hadoop, Spark, Storm, Giraph and Hive to execute applications developed using these models on commodity clusters and Clouds in a scalable manner.

It will cover topics on: Why Big Data platforms are necessary? How they are designed? What are the programming abstractions (e.g. MapReduce) that are used to compose data science applications? How the programming models are translated to scalable runtime execution on clusters and Clouds (e.g. Hadoop)? How do you design algorithms for analyzing large datasets? How do you map them to Big Data platforms? and How can these be used to develop Big Data applications in an integrated manner?

As part of a hands-on Project in this course, students will work with real, large datasets and commodity clusters, and use scalable algorithms and platforms to develop a Big Data application. The emphasis will be on designing applications that show good “weak scaling” as the size, speed or complexity of data increases, and using distributed systems such as commodity clusters and Clouds.

Besides class lectures, there will be several guest lectures by experts from the Industry who work on Big Data platforms, Cloud computing and data science.

This is a revised format of the previous years’ course, SE 256 (Jan 2016). This course extends from the systems basics introduced in the DS 286: DSP and DS 292: HPC courses at CDS. It is complementary to the proposed DS 222: Machine Learning with Large Datasets, likely to be offered in Aug, 2017, which will teach methods and techniques to design scalable algorithms to analyze large datasets. These algorithms in turn can be translated by students of this DS 256 course into programming patterns and scalable applications using Big Data platforms. This course also complements other breadth courses on data science like the E0 229: Foundations of Data Science and E0 259: Data Analytics.

Intended Learning Objectives

At the end of the course, students will have learned about the following concepts.

  1. Types of Big Data, Design goals of Big Data platforms, and where in the systems landscape these platforms fall.
  2. Distributed programming models for Big Data, including Map Reduce, Stream processing and Graph processing.
  3. Runtime Systems for Big Data platforms and their optimizations on commodity clusters and Clouds.
  4. Scaling data Science algorithms and analytics using Big Data platforms.


This is an introductory course on platforms and tools required to develop analytics over Big Data. However, it builds upon prior knowledge that students have on computing and software systems, programming, data structures and algorithms. Students must be familiar with Data Structures (e.g. Arrays, Queues, Trees, Hashmaps, Graphs) and Algorithms (e.g. Sorting, Searching, Graph traversal, String algorithms, etc.).

It is recommended that students have good programming skills (preferably in Java) which is necessary for the programming assignments and projects. Familiarity with one or more of the following courses will also be helpful (although not mandatory): DS 292 (HPC), DS 295 (Parallel Programming), E0 253 (Operating Systems), E0 264 (Distributed Computing Systems), SE252 (Introduction to Cloud Computing), E0 225 (Design and Analysis of Algorithms), E0 232 (Probability and Statistics), E0 259 (Data Analytics).


The total assessment score for the course is based on a 1000 point scale. Of this, the weightage to different activities will be as follows:

45% Homework Three programming assignments (150 points each)
30% Project One final project, to be done individually or in teams (300 points)
20% Exams One Final exam (200 points)
5% Participation Participation (i.e. not just “attendance”) in classroom discussions and online forum for the course (50 points)

Academic Integrity

Students must uphold IISc’s Academic Integrity guidelines. We have a zero-tolerance policy for cheating and unethical behavior in this course and failure to follow these guidelines will lead to sanctions and penalties. This includes a reduced or failing grade in the course, and recurrent academic violations will be reported to the Institute and may lead to an expulsion.

Learning takes place both within and outside the class. Hence, discussions between students and reference to online material is encouraged as part of the course to achieve the intended learning objectives. However, while you may learn from any valid source, you must form your own ideas and complete problems and assignments by yourself. All works submitted by the student as part of their academic assessment must be their own.

Verbatim reproduction of material from external sources (web pages, books, papers, etc.) is not acceptable. If you are paraphrasing external content (or even your own prior work) or were otherwise influenced by them while completing your assignments, projects or exams, you must clearly acknowledge them. When in doubt, add a citation!
While you may discuss lecture topics and broad outlines of homework problems and projects with others, you cannot collaborate in completing the assignments, copy someone else’s solution or falsify results. You cannot use notes or unauthorized resources during exams, or copy from others. The narrow exception to collaboration is between team-mates when competing the project, and even there, the contribution of each team member for each project assignment should be clearly documented.
Classroom Behavior
Ensure that the course atmosphere, both in the class, outside and on the online forum, is conducive for learning. Participate in discussions but do not dominate or be abusive. There are no “stupid” questions. Be considerate of your fellow students and avoid disruptive behavior.


  • Textbook:
  • Online Forum: ds256.jan17@mailman.serc.iisc.in | Mailman Info Webpage
  • Cluster Access: Students will validate their assignments and projects on the CDS turing cluster, and Cloud resources. Details for accessing the cluster and running programs on it will be covered in a lab session.

Teaching & Office Hours

  • Lecture: Tue/Thu 330-5PM, CDS 202 (Yogesh)
  • Tutorial: TBD
  • Office Hours:  By appointment

Schedule (tentative)

  • First Class on Jan 5
  • Project Demos on Sat, Apr 15, 2017 (10AM-5PM)
  • Final exam on Fri, Apr 28, 2017 2-5PM
12017-01-05Introduction to Course.
Data; Platforms; Applications. Big Data Stacks.
22017-01-10MapReduce: Programming ModelAssignment 0: Try pseudo-distributed MR, Grep, etc.L2+3
32017-01-12MapReduce: Basic AlgorithmsL2+3
42017-01-17Hadoop/HDFS: Introduction
*2017-01-19Tutorial: Hadoop; Turing Cluster
*2017-01-24Invited Talk: MSR Faculty Summit -- Data Science TrackAssignment 1 Posted
52017-01-31MapReduce: Advanced AlgorithmsL5+6
62017-02-02MapReduce: Advanced Algorithms
7,82017-02-07Hadoop: HDFS, YarnL4,7-8
*2017-02-12*Assignment 1 Due.
9,102017-02-14Distributed Stream ProcessingL9-10
112017-02-16Apache Storm
122017-02-21Pregel: ModelAssignment 2 Posted
132017-02-23Pregel: Algorithms
142017-02-24Guest Lecture: Manish Gupta, Microsoft
152017-02-28Tutorial: Pregel Algorithms & Giraph
162017-03-02Tutorial: Apache Giraph
172017-03-07Invited Talk: Varun Vasudev, Hortonworks
18,19,202017-03-09,14,16Spark and BDASAssignment 2 Due.

Assignment 3 Posted.
212017-03-21Invited Talk: ???
222017-03-23Invited Talk: ???Assignment 3 Due.
23,242017-03-28NoSQL HBase/Hive/Cassandra
252017-03-30NoSQL HBase/Hive/Cassandra
262017-04-04Invited Talk:
272017-04-06Tools: GraphDB; ML; CEP; TensorFlow; Viz
282017-04-11Invited Talk: ???
292017-04-13Invited Talk: ???Project Due.
302017-04-15*Project Demos


This year’s course will use an archive of tweets from Twitter for various assignments.

  1. Big Data: Using Apache Hadoop platform and MapReduce programming model for processing and extract information and structure from tweets

  2. Fast Data: Using Apache Storm platform and continuous dataflow model for streaming analytics and real-time mining over tweet streams
  3. Linked Data: Using Apache Giraph platform and Pregel programming model for network analytics over twitter followers and followees

Project Topics


Public Datasets

Exam Topics